Atjaunināt sīkdatņu piekrišanu

E-grāmata: Numerical Solutions of Boundary Value Problems of Non-linear Differential Equations

(Shahjalal Univ.), (Shahjalal Univ.), (Shahjalal Univ.)
  • Formāts: 110 pages
  • Izdošanas datums: 24-Oct-2021
  • Izdevniecība: Chapman & Hall/CRC
  • Valoda: eng
  • ISBN-13: 9781000486117
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 25,04 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 110 pages
  • Izdošanas datums: 24-Oct-2021
  • Izdevniecība: Chapman & Hall/CRC
  • Valoda: eng
  • ISBN-13: 9781000486117
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"Numerical Solutions of Boundary Value Problems of Non-linear Differential Equations presents in comprehensive detail numerical solution to boundary value problems of a number of non-linear differential equations. Numerical solutions have been presented in comprehensive detail Newton's iterative method has been applied to solve system of non-linear algebraic equations encountered In each case, Euler solutions have been obtained to serve as a cross-check as to any mistakes Mathematica has been used as theprogram. Programs written in Mathematica have been presented for re-use This book is primarily aimed at final year undergraduate students of Physics and Mathematics who have undertaken a course on computational physics"--

This book presents in comprehensive detail numerical solution to boundary value problems of a number of non-linear differential equations. This book is primarily aimed at final year undergraduate students of Physics and Mathematics who have undertaken a course on computational physics.

1. Introduction. 1.1. The non-linear differential equations we solved in
this book. 1.2 Approximation to derivatives. 1.3 Statement of the problem.
1.4 Euler solution of differential equation. 1.5 Newtons method of solving
system of non-linear equations
2. Numerical Solution of Boundary Value
Problem of Non-linear Differential Equation: Example I. 2.1 The 1st
non-linear differential equation in this book: Euler solution. 2.2 The 1st
non-linear differential equation in this book: solution by Newtons iterative
method.
3. Numerical solution of boundary value problem of non-linear
differential equation: Example II. 3.1 The 2nd non-linear differential
equation in this book: Euler solution. 3.2. The 2nd non-linear differential
equation in this book: solution by Newtons iterative method.
4. Numerical
solution of boundary value problem of non-linear differential equation:
Example III. 4.1 The 3rd non-linear differential equation in this book: Euler
solution. 4.2 The 3rd non-linear differential equation in this book: solution
by Newtons iterative method.
5. Numerical solution of boundary value problem
of non-linear differential equation: Example IV. 5.1 The 4th non-linear
differential equation in this book: Euler solution . 5.2 The 4th non-linear
differential equation in this book: solution by Newtons iterative method.
6.
Numerical solution of boundary value problem of non-linear differential
equation: Example V. 6.1 The 5th non-linear differential equation in this
book: Euler solution . 6.2 The 5th non-linear differential equation in this
book: solution by Newtons iterative method
7. Numerical solution of boundary
value problem of non-linear differential equation: Example VI 7.1 The 6th
non-linear differential equation in this book: Euler solution . 7.2 The 6th
non-linear differential equation in this book: solution by Newtons iterative
method.
8. Numerical solution of boundary value problem of non-linear
differential equation: A laborious exercise. 8.1 The 7th non-linear
differential equation in this book: Euler solution. 8.2 The 7th non-linear
differential equation in this book: solution by Newtons iterative method.
Concluding remarks. References
Sujaul Chowdhury is a Professor in Department of Physics, Shahjalal University of Science and Technology (SUST), Bangladesh. He obtained a B.Sc. (Honours) in Physics in 1994 and M.Sc. in Physics in 1996 from SUST. He obtained a Ph.D. in Physics from The University of Glasgow, UK in 2001. He was a Humboldt Research Fellow for one year at The Max Planck Institute, Stuttgart, Germany.

Syed Badiuzzaman Faruque is a Professor in Department of Physics, SUST. He has a research interest in Quantum Theory, Gravitational Physics, Material Science etc. He has been teaching Physics at university level for about 27 years. He studied Physics in The University of Dhaka, Bangladesh and in The University of Massachusetts Dartmouth, U.S.A. and did PhD in SUST.

Ponkog Kumar Das is an Assistant Professor in Department of Physics, SUST. He obtained a B.Sc. (Honours) and M.Sc. in Physics from SUST. He is a promising future intellectual.