Atjaunināt sīkdatņu piekrišanu

E-grāmata: Numerical And Symbolic Computations Of Generalized Inverses

(Univ Of Nis, Serbia), (Univ Of Nis, Serbia), (Fudan Univ, China)
  • Formāts: 472 pages
  • Izdošanas datums: 18-Jul-2018
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789813238688
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 125,10 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 472 pages
  • Izdošanas datums: 18-Jul-2018
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789813238688
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

We introduce new methods connecting numerics and symbolic computations, i.e., both the direct and iterative methods as well as the symbolic method for computing the generalized inverses. These will be useful for Engineers and Statisticians, in addition to applied mathematicians. Also, main applications of generalized inverses will be presented. Symbolic method covered in our book but not discussed in other book, which is important for numerical-symbolic computations.

Preface v
Acknowledgments ix
List of Algorithms
xvii
1 Introduction
1(4)
1.1 Brief introduction to generalized inverses
1(2)
1.2 Nonlinear optimization and generalized inversion
3(1)
1.3 Importance of generalized inverses
4(1)
2 Basic notions from matrix theory, optimization and theory of generalized inverses
5(50)
2.1 Basic notions from matrix theory
5(13)
2.1.1 LU, Cholesky and Jordan decomposition
8(2)
2.1.2 Singular value decomposition
10(3)
2.1.3 (M, N) singular value decomposition
13(1)
2.1.4 Reduced row echelon forms
14(1)
2.1.5 Householder transformations and QR decomposition
15(3)
2.1.6 Idempotent matrices and projectors
18(1)
2.2 Properties and representations of generalized inverses
18(20)
2.2.1 Matrix equations and {t, j, ..., k}-inverses
20(5)
2.2.2 Basic properties of the Moore-Penrose inverse
25(5)
2.2.3 Basic properties of the weighted Moore-Penrose inverse
30(3)
2.2.4 Definition and basic properties of the Drazin inverse
33(3)
2.2.5 Basic properties of outer inverses
36(2)
2.3 Least-squares properties of the Drazin-inverse solution
38(13)
2.3.1 The system of linear equations is Drazin consistent, i.e., b e R(AP)
39(2)
2.3.2 The system of linear equations is arbitrary
41(2)
2.3.3 Least-squares properties of the Drazin inverse
43(8)
2.4 Least-squares properties of the A(2)T,S-inverse solution
51(4)
3 Direct methods for computing generalized inverses
55(108)
3.1 Pull-rank representations of generalized inverses
56(10)
3.1.1 Full-rank representations of outer inverses
57(2)
3.1.2 Full-rank representations of {2, 4} and {2, 3}-inverses
59(3)
3.1.3 Full rank representations of important generalized inverses
62(1)
3.1.4 Factorization based on Gaussian eliminations
63(3)
3.2 Methods based on singular value decompositions and (M, N) singular value decompositions
66(4)
3.2.1 Computing the Moore-Penrose inverse by SVD factorization
66(2)
3.2.2 Computing generalized inverses by SVD like factorizations
68(2)
3.3 Greville's partitioning method for constant matrices
70(7)
3.3.1 Computing Moore-Penrose inverse by partitioning method
71(1)
3.3.2 Computing {1} inverses by Partitioning method
72(1)
3.3.3 Computing the weighted Moore-Penrose inverse by Partitioning method
73(1)
3.3.4 Cline's method
74(3)
3.4 Generalized inverses as a limit
77(3)
3.5 Le Verrier-Faddeev method
80(11)
3.5.1 Basic results
80(4)
3.5.2 Algorithms based on Le Verrier-Faddeev method
84(7)
3.6 Methods based on the Gauss-Jordan elimination
91(11)
3.6.1 Preliminary results
93(2)
3.6.2 The Gauss-Jordan algorithm for computing outer inverses
95(5)
3.6.3 Numerical experiments
100(2)
3.7 Block matrix algorithms
102(6)
3.7.1 Block representations of generalized inverses
102(2)
3.7.2 Generalized inverses of 2 × 2 block matrices
104(4)
3.8 Generalized inverses of rank-one modified matrix
108(30)
3.8.1 The Moore-Penrose inverse of rank-one modified matrix
110(6)
3.8.2 Computing {2, 4} and {2, 3}-inverses using rank-one updates
116(1)
3.8.3 Computing {2, 4} and {2, 3}-inverses by means of Sherman-Morrison formula
117(14)
3.8.4 Computing the pseudo-inverse of specific Toeplitz matrices using rank-one updates
131(7)
3.9 Full-rank representations of outer inverses based on the QR decomposition
138(3)
3.9.1 Introduction
138(1)
3.9.2 Representations of outer inverse based on QR decomposition
138(3)
3.10 Generalized inversion is not harder than matrix multiplication
141(10)
3.10.1 Strassen matrix multiplication and inversion
141(4)
3.10.2 Recursive Cholesky factorization
145(4)
3.10.3 Rapid computation of generalized inverses
149(2)
3.11 Determinantal representation of generalized inverses and adjoint mappings of matrices
151(6)
3.11.1 Notation and preliminaries about determinantal representations
151(2)
3.11.2 The existence of {2}-inverses
153(3)
3.11.3 Characterizations and representations of {2}-inverses
156(1)
3.12 Full rank representations and properties of the W-Weighted Drazin inverse
157(6)
3.12.1 About the W-Weighted Drazin inverse
157(2)
3.12.2 Basic representations of W-weighted Drazin inverse
159(1)
3.12.3 Additional representations of WDI
160(3)
4 Iterative methods for computing generalized inverses
163(142)
4.1 Modified SMS method for computing outer inverses
163(7)
4.1.1 SMS method for computing {2, 3} and {2, 4}-inverses of matrices
167(3)
4.2 SMS method appropriate for Toeplitz matrices
170(11)
4.2.1 Displacement rank and displacement operator of a Toeplitz matrix
170(2)
4.2.2 Modified SMS method for computing outer inverses of a Toeplitz matrix
172(9)
4.3 Hyperpower iterative method
181(6)
4.3.1 Basic properties of hyperpower iterative methods
182(5)
4.4 On hyperpower family of iterations for computing outer inverses possessing high efficiencies
187(5)
4.4.1 Factorized forms of the hyperpower family
188(4)
4.5 General higher-order iterative methods
192(26)
4.5.1 Generalized Schulz iterative methods for computing outer inverses
192(4)
4.5.2 Convergence to outer inverse
196(2)
4.5.3 The choice of the initial value
198(2)
4.5.4 Improvement of the 9th order method
200(1)
4.5.5 Rapid Hyper-power based iterative methods for computing outer inverses
201(5)
4.5.6 General scheme for construction of the generalized Schulz iterative methods for outer inverses
206(7)
4.5.7 Generalized Schulz methods - revisited
213(5)
4.6 Scaled matrix iterations for computing outer inverses
218(3)
4.7 Iterative method for computing Moore-Penrose inverse based on Penrose equations
221(20)
4.7.1 Motivation
221(2)
4.7.2 The iterative method arising from Penrose equations
223(6)
4.7.3 Numerical experience
229(2)
4.7.4 Factorizations of hyperpower family of iterative methods via least squares
231(4)
4.7.5 An accelerated iterative method for computing weighted Moore-Penrose inverse
235(3)
4.7.6 Stability of a pth order iteration for finding generalized inverses
238(3)
4.8 Iterative methods based on Groetsch Representation Theorem
241(9)
4.8.1 Representation and approximation of outer generalized inverses
241(9)
4.9 Iterative methods arising from optimization methods
250(20)
4.9.1 Unconstrained optimization
251(8)
4.9.2 Scalar correction method (SC method)
259(4)
4.9.3 Application of the SC method for finding the Moore-Penrose inverse of a matrix
263(3)
4.9.4 Computing the Drazin inverse using optimization methods
266(3)
4.9.5 Computing A(2)T,S-inverse using optimization methods
269(1)
4.10 Another iterative methods
270(25)
4.10.1 Limit representations of generalized inverses and related methods
270(13)
4.10.2 Self-correcting iterative methods for computing {2}-inverses
283(4)
4.10.3 Iterative methods based on matrix splitting
287(3)
4.10.4 A new type of matrix splitting and its applications
290(5)
4.11 Iterative methods for computing matrix functions
295(10)
4.11.1 Approximating the matrix sign function
296(3)
4.11.2 An iterative method for polar decomposition and matrix sign function
299(6)
5 Symbolic computation of generalized inverses
305(50)
5.1 Short overview of algorithms for symbolic computation
307(1)
5.2 Symbolic computation based on Faddeev's algorithms
308(15)
5.2.1 Faddeev's algorithms for constant and rational matrices
309(2)
5.2.2 Faddeev's algorithms for polynomial matrices
311(2)
5.2.3 Computing outer inverses symbolically by the Le Verrier-Faddeev method
313(2)
5.2.4 Computing Moore-Penrose inverse of polynomial matrices by interpolation
315(2)
5.2.5 Le Verrier-Faddeev method for computing Drazin inverse of polynomial matrices
317(2)
5.2.6 Interpolation algorithm for computing various generalized inverses of polynomial matrices
319(4)
5.3 Algorithms based on Greville's Partitioning method
323(23)
5.3.1 Greville's method for constant and rational matrices
324(4)
5.3.2 Greville's method for polynomial matrices
328(18)
5.4 Symbolic computation of A(2)T,S-inverses using QDR factorization
346(9)
5.4.1 Symbolic computation based on QDR factorization
348(7)
6 Applications of generalized inverses
355(50)
6.1 Image restoration based on generalized inverses
356(34)
6.1.1 Preliminaries about image restoration
357(6)
6.1.2 Removal of uniform blur in X-ray images
363(5)
6.1.3 Partitioning method for removing non-uniform blur in images
368(6)
6.1.4 Application of rank-one-updates in image restoration
374(5)
6.1.5 Removal of blur in images based on least squares solutions
379(6)
6.1.6 Image deblurring based on separable restoration methods and least squares
385(5)
6.2 Application of pseudoinverse in balancing chemical equations
390(5)
6.2.1 Matrix iterations for computing generalized inverses and balancing chemical equations
391(4)
6.3 Application of generalized inverses in feedback compensation problem
395(4)
6.4 Application of the PI in solving indefinite least-squares problems
399(2)
6.5 Generalized inverses as solutions of matrix quadratic problems
401(4)
7 Concluding remarks
405(4)
Bibliography 409(40)
Index 449