Atjaunināt sīkdatņu piekrišanu

E-grāmata: Ocean Surface Waves: Their Physics And Prediction (Third Edition)

(Inst Of Oceanology Of The Polish Academy Of Sciences, Sopot, Poland)
  • Formāts: 800 pages
  • Sērija : Advanced Series On Ocean Engineering 45
  • Izdošanas datums: 28-Sep-2017
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789813228399
  • Formāts - EPUB+DRM
  • Cena: 75,51 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 800 pages
  • Sērija : Advanced Series On Ocean Engineering 45
  • Izdošanas datums: 28-Sep-2017
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789813228399

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book is an extended and substantially updated edition of the previous book editions published in 1996 and 2013 under the same title. The 3rd edition is a one-volume, modern and comprehensive overview of the current knowledge of regular and random ocean surface waves in deep waters and in coastal zones.Since the previous editions many new theoretical advances have been made in the physical understanding and analytical and numerical treatment of various ocean wave problems. The revisions and supplements demanded by these advances have been substantial, therefore the scope of the book has been extended by adding a new chapter and substantially supplementing others.All chapters of the book have been rewritten to include and describe in detail many new discoveries made since the completion of the previous editions. In this 3rd edition a comprehensive and updated overview of the fundamentals of the regular wave mechanics, as well as the spectral and statistical properties of random waves are given. Except for the updated chapters dedicated to tsunami and extreme waves, a new chapter dealing with other types of impulsive waves starting from rest, are also included.The air-sea interaction processes as well as the last improvements in ocean wave modelling and presently available wave prediction models (WAM, WAVEWATCH III, UMWM, NEMO) are thoroughly discussed and their applications are demonstrated. The review of the present ocean observation methods encompasses the modern sea-truthing, as well as applications of data from presently operating marine satellites.In this revised edition, chapters on the behavior of surface waves in the vegetated environments such as coral reef, mangrove forest, seaweed and seagrass areas are substantially extended and updated to include the last discoveries.The explanations in the book are self-contained and detailed enough to capture the interest of the potential readers and to prompt them to explore the research literature. The list of rapidly growing number of the recent papers on the ocean waves has been extended substantially, up to about 900 titles.
Preface to the Third Edition vii
Preface to the Second Edition ix
Preface to the First Edition xi
1 Introduction 1(58)
1.1 Waves in the Ocean and Their Significance
1(5)
1.2 Basic Assumptions on Seawater and Wave Motion
6(7)
1.2.1 Continuous fluid and water particle concepts
6(1)
1.2.2 Properties of seawater and its motion
7(6)
1.3 Fundamentals of Description of Regular Waves
13(15)
1.3.1 Linear description of waves
13(3)
1.3.2 Nonlinear description of waves
16(12)
1.3.2.1 Second-order Stokes waves
16(2)
1.3.2.2 Higher-order Stokes waves
18(1)
1.3.2.3 Nonlinear Schrodinger (NLS) equations and modulational instability
19(6)
1.3.2.4 Boussinesq and Korteweg-de Vries equations for waves in shallow water
25(3)
1.4 Methods of Description of Ocean Random Waves
28(31)
1.4.1 Preliminaries
28(3)
1.4.2 Basic definitions and analysis of random time series
31(12)
1.4.3 Wave energy balance in spectral form
43(5)
1.4.4 Representation of wave properties in time-frequency space
48(14)
1.4.4.1 Wavelet transform approach
48(8)
1.4.4.2 The Hilbert transform representation of wave signal
56(3)
2 Interaction of Surface Waves and Wind 59(38)
2.1 Introduction
59(3)
2.2 Airflow over Sea Surface
62(16)
2.2.1 Atmospheric boundary layer above water
62(4)
2.2.2 Drag coefficient CD
66(7)
2.2.2.1 Dependence of CD on wind velocity
66(3)
2.2.2.2 Dependence of CD on other air-sea parameters
69(4)
2.2.3 Mathematical models of the airflow above waves
73(5)
2.3 Role of Surface Waves in Air-sea Interaction
78(3)
2.4 Generation of Waves by Wind
81(11)
2.4.1 Basic results of the Phillips-Miles model
81(7)
2.4.2 Quasi-linear theory of waves generation
88(2)
2.4.3 Wind-current coupling in gravity-capillary wave generation model
90(2)
2.5 Similarity Laws for Wind-induced Waves
92(5)
3 Spectral Properties of Ocean Waves 97(48)
3.1 Introduction
97(1)
3.2 Frequency Spectra of Ocean Waves
98(28)
3.2.1 Spectral moments and spectral width
98(5)
3.2.2 Saturation range of the frequency spectrum
103(9)
3.2.2.1 Phillips' constant alphap and energy loss by wave breaking
104(2)
3.2.2.2 Zaslavskii and Zakharov' representation
106(2)
3.2.2.3 Toba's representation
108(1)
3.2.2.4 Finite water depth
109(2)
3.2.2.5 Influence of surface drift
111(1)
3.2.3 Typical frequency spectra
112(11)
3.2.3.1 The Pierson-Moskowitz spectrum
112(1)
3.2.3.2 The JONSWAP spectrum and its modifications
113(4)
3.2.3.3 Multipeak spectra
117(6)
3.2.3.4 The TMA spectrum
123(1)
3.2.4 Higher order spectra
123(3)
3.3 Dispersion Relation for Ocean Waves
126(4)
3.4 Directional Spectral Functions
130(15)
3.4.1 Introduction
130(1)
3.4.2 The cosine-power models
131(5)
3.4.3 The von Mises formula
136(1)
3.4.4 The hyperbolic type model
136(2)
3.4.5 The double peak model
138(5)
3.4.6 Directional wave spectra under hurricane conditions
143(2)
4 Statistical Properties of Ocean Waves 145(104)
4.1 Introduction
145(1)
4.2 Surface Displacements
146(28)
4.2.1 Probability distribution of surface displacements of the Gaussian wave field
146(5)
4.2.2 Distribution of the non-Gaussian surface wave displacement
151(5)
4.2.3 Probability density of surface maxima and minima
156(12)
4.2.4 Probability distribution of surface displacements in finite water depth
168(6)
4.3 Surface Slopes
174(10)
4.3.1 Governing relationships and definitions
175(3)
4.3.2 Influence of the directional spreading on surface waves slopes
178(6)
4.4 Wave Height
184(26)
4.4.1 Probability distribution of wave height for a narrow-band spectrum
184(9)
4.4.2 Influence of wave nonlinearity on wave height distribution
193(7)
4.4.2.1 Modification of the Rayleigh distribution
193(3)
4.4.2.2 Crest-to-trough wave height distribution
196(4)
4.4.3 Probability distribution of large wave heights
200(1)
4.4.4 Probability distribution of extreme wave heights
201(6)
4.4.5 Probability distribution of wave height in finite water depth
207(3)
4.5 Wave Period
210(10)
4.5.1 Joint distribution of wave heights and periods
211(5)
4.5.2 Probability distribution of wave period
216(4)
4.6 Wave Orbital Velocities and Pressure
220(15)
4.6.1 Spectral functions for orbital velocities and pressure
220(3)
4.6.2 Bottom velocity
223(5)
4.6.3 Velocity close to sea surface
228(3)
4.6.4 Influence of intermittency effect on probability distribution of orbital velocities near water level
231(4)
4.7 Wave Group Statistics
235(8)
4.7.1 Level-crossing problem
236(5)
4.7.2 Markov chain representation
241(2)
4.8 Surface Area of an Ocean Waves
243(6)
5 Properties of Breaking Waves 249(46)
5.1 Introduction
249(2)
5.2 Wave Breaking in Deep Water
251(20)
5.2.1 Experimental insights into mechanisms of wave breaking
251(5)
5.2.2 Whitecap coverage of the sea surface
256(5)
5.2.3 Wave breaking criteria and probability of breaking
261(3)
5.2.4 Energy dissipation due to wave breaking
264(6)
5.2.5 Relationship of aerosol fluxes and wave breaking
270(1)
5.3 Wave Breaking in Shallow Water
271(24)
5.3.1 Surf similarity parameter
271(1)
5.3.2 Wave breaking models in shallow water
272(5)
5.3.2.1 Energy flux difference model
273(2)
5.3.2.2 Surface roller concept
275(2)
5.3.3 Periodic bore approach
277(2)
5.3.4 Battjes and Janssen solution (BJ78) for gentle beaches and its extension for steep slopes
279(18)
5.3.4.1 Thornton and Guza modification (TG83)
284(2)
5.3.4.2 Transformation of probability distribution
286(6)
5.3.4.3 Incorporation of wave breaking process into various surf-beat models
292(3)
6 Prediction of Waves in Deep Water 295(68)
6.1 Introduction
295(2)
6.2 Basic Wave Processes in Deep Water
297(31)
6.2.1 Atmospheric forcing
298(8)
6.2.1.1 Governing equations
298(5)
6.2.1.2 Response of waves to an opposing wind
303(3)
6.2.2 Nonlinear interaction between wave components
306(14)
6.2.2.1 Principal properties of nonlinear energy transfer
306(9)
6.2.2.2 Parameterisation of non-linear energy transfer
315(5)
6.2.3 Energy dissipation due to whitecapping
320(3)
6.2.4 Energy balance for fully-developed and growing seas
323(5)
6.3 Wave Prediction Numerical Models
328(17)
6.3.1 Early years prediction models
328(3)
6.3.2 Third-generation wave models
331(11)
6.3.2.1 WAM model
332(6)
6.3.2.2 WAVEWATCH III model
338(3)
6.3.2.3 UMWM model
341(1)
6.3.3 Wave models as elements of the two-way coupled ocean circulation models
342(2)
6.3.4 General considerations on data assimilation in wave models
344(1)
6.4 Empirical Prediction Models
345(18)
6.4.1 Fetch-and time-limited wave growth
345(2)
6.4.2 JONSWAP prediction graphs
347(1)
6.4.3 SPM prediction graphs
348(1)
6.4.4 Donelan method
349(2)
6.4.5 Krylov method
351(8)
6.4.6 Comparison of empirical methods
359(4)
7 Prediction of Waves in Shallow Water 363(88)
7.1 Introduction
363(1)
7.2 Basic Wave Processes in Shallow Water
364(74)
7.2.1 Wave refraction due to bottom shoaling
364(9)
7.2.2 Refraction by currents in a shoaling water depth
373(6)
7.2.2.1 Propagation of random waves in an inhomogeneous region
373(4)
7.2.2.2 Influence of uniform current on a saturation range spectrum
377(2)
7.2.3 Combined refraction and diffraction
379(21)
7.2.3.1 A brief orientation
379(4)
7.2.3.2 Geometrical optics and mild-slope approximation
383(3)
7.2.3.3 Time-dependent mild-slope equation
386(2)
7.2.3.4 Extended mild-slope equations
388(4)
7.2.3.5 Mild-slope equations for random waves
392(2)
7.2.3.6 Influence of energy dissipation
394(3)
7.2.3.7 Wave set-down and set-up
397(3)
7.2.4 Reflection of ocean waves
400(10)
7.2.5 Wave energy dissipation due to bottom friction
410(7)
7.2.5.1 A brief orientation
410(1)
7.2.5.2 Probability distribution of the bottom shear stress
410(5)
7.2.5.3 Eddy viscosity approach for bottom boundary layer
415(2)
7.2.6 Energy dissipation due to bottom permeability
417(3)
7.2.7 Nonlinear interaction between spectral wave components
420(7)
7.2.8 The largest wave height in water of constant depth
427(11)
7.2.8.1 Non-linearity parameter Fc for practical use
427(3)
7.2.8.2 Application of higher approximations of Stokes' and cnoidal theories
430(1)
7.2.8.3 Limiting wave height for mechanically generated waves
431(5)
7.2.8.4 Maximum irregular wave height
436(2)
7.3 Wave Prediction Numerical Models
438(13)
7.3.1 Early years prediction models
438(8)
7.3.1.1 Third generation wave models
441(2)
7.3.1.2 Wave prediction models for shallow waters
443(3)
7.3.2 Empirical prediction models
446(8)
7.3.2.1 SPM prediction method
446(2)
7.3.2.2 Krylov prediction method
448(3)
8 Rogue Waves 451(30)
8.1 Introduction
451(3)
8.2 Rogue Wave Observations
454(7)
8.2.1 Field observations
454(4)
8.2.2 Laboratory experiments
458(3)
8.3 Probability of Occurrence of Rogue Waves
461(6)
8.4 Rogue Wave Generation
467(10)
8.4.1 Linear models of rogue waves generation
467(3)
8.4.1.1 Spatial focusing of water waves
467(2)
8.4.1.2 Wave-current interaction
469(1)
8.4.2 Nonlinear models of rogue wave generation
470(7)
8.5 Impact of Rogue Waves on Marine Safety
477(4)
9 Wave Motion Starting from Rest: Tsunami 481(24)
9.1 Introduction
481(1)
9.2 Large Scale Tsunamis in the World Ocean
482(4)
9.3 Tsunami Generation Due to Earthquake
486(12)
9.3.1 Tsunami generation phase
486(1)
9.3.2 Numerical modelling of tsunami in deep ocean
487(3)
9.3.3 Tsunami in coastal zone and tsunami run-up
490(7)
9.3.3.1 Governing equations
490(7)
9.3.4 Statistical characteristics of run-up of long waves
497(1)
9.4 Tsunami Due to Landslides
498(7)
9.4.1 Introduction
498(9)
9.4.1.1 Experimental and theoretical studies
499(6)
10 Wave Motion Starting from Rest: Other Examples 505(22)
10.1 Introduction
505(1)
10.2 Boundary Conditions
506(1)
10.3 Waves Due to Meteorite Impact
507(6)
10.3.1 Introduction
507(2)
10.3.2 Impulsive wave propagation on constant water depth
509(4)
10.4 Impulsive Waves Due to Glacier Calving
513(14)
10.4.1 Introduction
513(2)
10.4.2 Ice column sliding into water with initial zero velocity
515(8)
10.4.2.1 Dynamics of the ice block motion
515(3)
10.4.2.2 Surface waves due to ice column sliding into water without impact
518(5)
10.4.3 Cylindrical ice block of small thickness impacting on water
523(4)
11 Waves at Coral Reefs and Islands 527(26)
11.1 Introduction
527(1)
11.2 Maximum Wave Height on Shoal Flat
528(2)
11.3 Waves Propagation on Steep Reef Slopes
530(4)
11.4 Sheltering of Surface Waves by Islands
534(8)
11.4.1 A brief orientation
534(1)
11.4.2 Scattering of waves by an isolated steep conical island
534(6)
11.4.2.1 Pure refraction solution
536(1)
11.4.2.2 Refraction-diffraction solution with dissipation
537(3)
11.4.3 Scattering of waves by a group of islands
540(2)
11.5 Interaction of Waves with Coral Reef Bottoms
542(11)
11.5.1 Forces on coral
542(7)
11.5.2 Velocity field around coral
549(1)
11.5.3 Probability of coral dislodgement or persistence
550(3)
12 Waves in Vegetated Coasts 553(20)
12.1 Introduction
553(1)
12.2 Waves Transformation in Vegetated Coasts
554(3)
12.3 Waves in Mangrove Forests
557(12)
12.3.1 Numerical models
557(10)
12.3.2 Field observations
567(2)
12.4 Wave Damping by Seaweeds and Seagrasses
569(4)
12.4.1 Seaweeds influence on waves
569(1)
12.4.2 Seagrasses influence on waves
570(3)
13 Wave-induced Pressure and Flow in a Porous Bottom 573(24)
13.1 Introduction
573(2)
13.2 Wave-induced Pore Pressure in Sea Bottom
575(10)
13.2.1 Governing equations
575(4)
13.2.2 Boundary conditions
579(1)
13.2.3 Harmonic solution
580(1)
13.2.4 Soil completely saturated with water
580(1)
13.2.5 Soil saturated with a mixture of water and gas
581(1)
13.2.6 Velocities of groundwater circulation
582(1)
13.2.7 Experimental data on pore pressure
583(2)
13.3 Pore Pressure in Sea Bottom Due to Wave Set-up
585(4)
13.4 Spectral Properties of Wave-induced Pore Pressure
589(2)
13.5 Circulation in Permeable Rippled Bed
591(6)
13.5.1 Introduction
591(1)
13.5.2 Circulation below the singular bottom form
592(5)
14 Wave Observations and Long-term Statistics 597(30)
14.1 Introduction
597(1)
14.2 Wave Observations
597(5)
14.2.1 Visual wave observations
597(3)
14.2.2 Instrumental wave observations
600(2)
14.3 Wave Geography
602(8)
14.3.1 A brief orientation
602(2)
14.3.2 Atlantic Ocean
604(1)
14.3.3 Pacific Ocean
605(1)
14.3.4 Indian Ocean
606(1)
14.3.5 Wave climate in some local seas
607(3)
14.4 Long-term Statistics of Sea Severity
610(17)
14.4.1 Long-term distributions of wave heights
610(9)
14.4.2 Probability distributions of extreme waves
619(6)
14.4.3 Goodness of fit tests and confidence intervals
625(2)
15 Wave Measurement Techniques 627(18)
15.1 Introduction
627(1)
15.2 A Single Point Wave Data
628(10)
15.2.1 Laboratory measurements
628(3)
15.2.1.1 Resistance wave gauges
628(1)
15.2.1.2 Capacitance wave gauges
628(1)
15.2.1.3 Pressure transducers
628(3)
15.2.2 Field measurements
631(5)
15.2.2.1 Wave staffs
631(1)
15.2.2.2 Wave buoys
631(3)
15.2.2.3 Acoustic Doppler current profiler (ADCP)
634(2)
15.2.3 Measurement of wave directionality
636(2)
15.3 Remote Sensing Techniques
638(7)
15.3.1 A brief orientation
638(1)
15.3.2 Application of satellite altimetry
638(2)
15.3.3 Application of satellite Synthetic Aperture Radar
640(5)
16 Data Processing and Simulation Techniques 645(28)
16.1 Introduction
645(1)
16.2 Data Processing Methods
646(22)
16.2.1 Spectral characteristics of surface waves
646(6)
16.2.1.1 Data sampling
646(1)
16.2.1.2 Standardisation of data, trend removal and filtering
647(2)
16.2.1.3 Determination of frequency spectra
649(3)
16.2.2 Directional spread and directional wave spectra
652(14)
16.2.2.1 Directional spread
652(1)
16.2.2.2 Fourier Expansion Method
653(4)
16.2.2.3 Maximum Entropy Method
657(5)
16.2.2.4 Maximum Likelihood Method
662(2)
16.2.2.5 Comparison of various analytical techniques
664(2)
16.2.3 Short information on estimation of the statistical wave characteristics
666(2)
16.3 Numerical Simulation Techniques
668(5)
16.3.1 Introduction
668(1)
16.3.2 Simulation of random sea with random phase only
669(2)
16.3.3 Simulation of random sea with random amplitudes
671(2)
Bibliography 673(68)
Author Index 741(20)
Subject Index 761(8)
Colour Plates 769