Atjaunināt sīkdatņu piekrišanu

E-grāmata: OFDM for Underwater Acoustic Communications

  • Formāts: PDF+DRM
  • Izdošanas datums: 19-Mar-2014
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781118693858
  • Formāts - PDF+DRM
  • Cena: 128,43 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: PDF+DRM
  • Izdošanas datums: 19-Mar-2014
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781118693858

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book, the first to describe processing techniques central to underwater OFDM, covers the characteristics of underwater acoustic channels and stresses the difference from wireless radio channels.

A blend of introductory material and advanced signal processing and communication techniques, of critical importance to underwater system and network development

This book, which is the first to describe the processing techniques central to underwater OFDM, is arranged into four distinct sections: First, it describes the characteristics of underwater acoustic channels, and stresses the difference from wireless radio channels. Then it goes over the basics of OFDM and channel coding. The second part starts with an overview of the OFDM receiver, and develops various modules for the receiver design in systems with single or multiple transmitters. This is the main body of the book. Extensive experimental data sets are used to verify the receiver performance. In the third part, the authors discuss applications of the OFDM receiver in i) deep water channels, which may contain very long separated multipath clusters, ii) interference-rich environments, where an unintentional interference such as Sonar will be present, and iii) a network with multiple users where both non-cooperative and cooperative underwater communications are developed. Lastly, it describes the development of a positioning system with OFDM waveforms, and the progress on the OFDM modem development. Closely related industries include the development and manufacturing of autonomous underwater vehicles (AUVs) and scientific sensory equipment. AUVs and sensors in the future could integrate modems, based on the OFDM technology described in this book.

Contents includes: Underwater acoustic channel characteristics/OFDM basics/Peak-to-average-ratio control/Detection and Doppler estimation (Doppler scale and CFO)/Channel estimation and noise estimation/A block-by-block progressive receiver and performance results/Extensions to multi-input multi-output OFDM/Receiver designs for multiple users/Cooperative underwater OFDM (Physical layer network coding and dynamic coded cooperation)/Localization with OFDM waveforms/Modem developments

A valuable resource for Graduate and postgraduate students on electrical engineering or physics courses; electrical engineers, underwater acousticians, communications engineers

Preface xvii
Acronyms xix
Notation xxiii
1 Introduction
1(22)
1.1 Background and Context
1(2)
1.1.1 Early Exploration of Underwater Acoustics
1(1)
1.1.2 Underwater Communication Media
2(1)
1.1.3 Underwater Systems and Networks
3(1)
1.2 UWA Channel Characteristics
3(8)
1.2.1 Sound Velocity
3(2)
1.2.2 Propagation Loss
5(2)
1.2.3 Time-Varying Multipath
7(3)
1.2.4 Acoustic Propagation Models
10(1)
1.2.5 Ambient Noise and External Interference
11(1)
1.3 Passband Channel Input--Output Relationship
11(4)
1.3.1 Linear Time-Varying Channel with Path-Specific Doppler Scales
12(1)
1.3.2 Linear Time-Varying Channels with One Common Doppler Scale
13(1)
1.3.3 Linear Time-Invariant Channel
13(1)
1.3.4 Linear Time-Varying Channel with Both Amplitude and Delay Variations
14(1)
1.3.5 Linear Time-Varying Channel with Frequency-Dependent Attenuation
15(1)
1.4 Modulation Techniques for UWA Communications
15(5)
1.4.1 Frequency Hopped FSK
15(1)
1.4.2 Direct Sequence Spread Spectrum
16(1)
1.4.3 Single Carrier Modulation
17(1)
1.4.4 Sweep-Spread Carrier (S2C) Modulation
18(1)
1.4.5 Multicarrier Modulation
18(1)
1.4.6 Multi-Input Multi-Output Techniques
19(1)
1.4.7 Recent Developments on Underwater Acoustic Communications
20(1)
1.5 Organization of the Book
20(3)
2 OFDM Basics
23(16)
2.1 Zero-Padded OFDM
23(4)
2.1.1 Transmitted Signal
23(3)
2.1.2 Receiver Processing
26(1)
2.2 Cyclic-Prefixed OFDM
27(1)
2.2.1 Transmitted Signal
27(1)
2.2.2 Receiver Processing
28(1)
2.3 OFDM Related Issues
28(3)
2.3.1 ZP-OFDM versus CP-OFDM
28(1)
2.3.2 Peak-to-Average-Power Ratio
29(1)
2.3.3 Power Spectrum and Bandwidth
29(1)
2.3.4 Subcarrier Assignment
30(1)
2.3.5 Overall Data Rate
30(1)
2.3.6 Design Guidelines
31(1)
2.4 Implementation via Discrete Fourier Transform
31(1)
2.5 Challenges and Remedies for OFDM
32(4)
2.5.1 Benefits of Diversity Combining and Channel Coding
33(3)
2.6 MIMO OFDM
36(2)
2.7 Bibliographical Notes
38(1)
3 Nonbinary LDPC Coded OFDM
39(24)
3.1 Channel Coding for OFDM
39(4)
3.1.1 Channel Coding
39(2)
3.1.2 Coded Modulation
41(1)
3.1.3 Coded OFDM
42(1)
3.2 Nonbinary LDPC Codes
43(3)
3.2.1 Nonbinary Regular Cycle Codes
44(1)
3.2.2 Nonbinary Irregular LDPC Codes
45(1)
3.3 Encoding
46(2)
3.4 Decoding
48(4)
3.4.1 Initialization
48(1)
3.4.2 Variable-to-Check-Node Update
49(1)
3.4.3 Check-to-Variable-Node Update
50(1)
3.4.4 Tentative Decision and Decoder Outputs
51(1)
3.5 Code Design
52(6)
3.5.1 Design of Regular Cycle codes
53(1)
3.5.2 Design of Irregular LDPC Codes
53(2)
3.5.3 Quasi-Cyclic Nonbinary LDPC codes
55(3)
3.6 Simulation Results of Coded OFDM
58(1)
3.7 Bibliographical Notes
59(4)
4 PAPR Control
63(8)
4.1 PAPR Comparison
63(2)
4.2 PAPR Reduction
65(4)
4.2.1 Clipping
65(2)
4.2.2 Selective Mapping
67(2)
4.2.3 Peak Reduction Subcarriers
69(1)
4.3 Bibliographical Notes
69(2)
5 Receiver Overview and Preprocessing
71(20)
5.1 OFDM Receiver Overview
72(1)
5.2 Receiver Preprocessing
73(5)
5.2.1 Receiver Preprocessing
73(1)
5.2.2 Digital Implementation
74(3)
5.2.3 Frequency-Domain Oversampling
77(1)
5.3 Frequency-Domain Input-Output Relationship
78(4)
5.3.1 Single-input Single-Output Channel
78(1)
5.3.2 Single-Input Multi-Output Channel
79(1)
5.3.3 Multi-Input Multi-Output Channel
80(1)
5.3.4 Channel Matrix Structure
81(1)
5.4 OFDM Receiver Categorization
82(3)
5.4.1 ICI-Ignorant Receiver
82(1)
5.4.2 ICI-Aware Receiver
83(2)
5.4.3 Block-by-Block Processing
85(1)
5.4.4 Block-to-Block Processing
85(1)
5.4.5 Discussion
85(1)
5.5 Receiver Performance Bound with Simulated Channels
85(3)
5.5.1 Simulating Underwater Acoustic Channels
86(1)
5.5.2 ICI Effect in Time-Varying Channels
86(1)
5.5.3 Outage Performance of SISO Channel
87(1)
5.6 Extension to CP-OFDM
88(1)
5.6.1 Receiver Preprocessing
88(1)
5.6.2 Frequency-Domain Input--Output Relationship
89(1)
5.7 Bibliographical Notes
89(2)
6 Detection, Synchronization and Doppler Scale Estimation
91(26)
6.1 Cross-Correlation Based Methods
92(7)
6.1.1 Cross-Correlation Based Detection
92(4)
6.1.2 Cross-Correlation Based Synchronization and Doppler Scale Estimation
96(3)
6.2 Detection, Synchronization and Doppler Scale Estimation with CP-OFDM
99(4)
6.2.1 CP-OFDM Preamble with Self-Repetition
99(1)
6.2.2 Self-Correlation Based Detection, Synchronization and Doppler Scale Estimation
100(1)
6.2.3 Implementation
101(2)
6.3 Synchronization and Doppler Scale Estimation for One ZP-OFDM Block
103(1)
6.3.1 Null-Subcarrier based Blind Estimation
103(1)
6.3.2 Pilot-Aided Estimation
104(1)
6.3.3 Decision-Aided Estimation
104(1)
6.4 Simulation Results for Doppler Scale Estimation
104(4)
6.4.1 RMSE Performance with CP-OFDM
105(1)
6.4.2 RMSE Performance with ZP-OFDM
106(1)
6.4.3 Comparison of Blind Methods of CP- and ZP-OFDM
107(1)
6.5 Design Examples in Practical Systems
108(2)
6.6 Residual Doppler Frequency Shift Estimation
110(5)
6.6.1 System Model after Resampling
110(1)
6.6.2 Impact of Residual Doppler Shift Compensation
111(1)
6.6.3 Two Residual Doppler Shift Estimation Methods
112(1)
6.6.4 Simulation Results
113(2)
6.7 Bibliographical Notes
115(2)
7 Channel and Noise Variance Estimation
117(20)
7.1 Problem Formulation for ICI-Ignorant Channel Estimation
118(2)
7.1.1 The Input--Output Relationship
118(1)
7.1.2 Dictionary Based Formulation
118(2)
7.2 ICI-Ignorant Sparse Channel Sensing
120(4)
7.2.1 Dictionary Resolution versus Channel Sparsity
121(1)
7.2.2 Sparsity Factor
122(1)
7.2.3 Number of Pilots versus Number of Paths
123(1)
7.3 ICI-Aware Sparse Channel Sensing
124(3)
7.3.1 Problem Formulation
124(1)
7.3.2 ICI-Aware Channel Sensing
124(1)
7.3.3 Pilot Subcarrier Distribution
125(1)
7.3.4 Influence of Data Symbols
126(1)
7.4 Sparse Recovery Algorithms
127(4)
7.4.1 Matching Pursuit
127(1)
7.4.2 E1-Norm Minimization
128(1)
7.4.3 Matrix-Vector Multiplication via FFT
129(2)
7.4.4 Computational Complexity
131(1)
7.5 Extension to Multi-Input Channels
131(3)
7.5.1 ICI-Ignorant Sparse Channel Sensing
131(1)
7.5.2 ICI-Aware Sparse Channel Sensing
132(2)
7.6 Noise Variance Estimation
134(1)
7.7 Noise Prewhitening
134(2)
7.7.1 Noise Spectrum Estimation
135(1)
7.7.2 Whitening in the Frequency Domain
136(1)
7.8 Bibliographical Notes
136(1)
8 Data Detection
137(20)
8.1 Symbol-by-Symbol Detection in ICI-Ignorant OFDM Systems
139(2)
8.1.1 Single-Input Single-Output Channel
139(1)
8.1.2 Single-Input Multi-Output Channel
140(1)
8.2 Block-Based Data Detection in ICI-Aware OFDM Systems
141(4)
8.2.1 MAP Equalizer
142(1)
8.2.2 Linear MMSE Equalizer with A Priori Information
142(3)
8.2.3 Extension to the Single-Input Multi-Output Channel
145(1)
8.3 Data Detection for OFDM Systems with Banded ICI
145(6)
8.3.1 BCJR Algorithm and Log-MAP Implementation
145(3)
8.3.2 Factor-Graph Algorithm with Gaussian Message Passing
148(1)
8.3.3 Computations related to Gaussian Messages
149(1)
8.3.4 Extension to SIMO Channel
150(1)
8.4 Symbol Detectors for MIMO OFDM
151(2)
8.4.1 ICI-Ignorant MIMO OFDM
151(1)
8.4.2 Full-ICI Equalization
152(1)
8.4.3 Banded-ICI Equalization
152(1)
8.5 MCMC Method for Data Detection in MIMO OFDM
153(2)
8.5.1 MCMC Method for ICI-Ignorant MIMO Detection
153(1)
8.5.2 MCMC Method for Banded-ICI MIMO Detection
154(1)
8.6 Bibliographical Notes
155(2)
9 OFDM Receivers with Block-by-Block Processing
157(20)
9.1 Noniterative ICI-Ignorant Receiver
158(3)
9.1.1 Noniterative ICI-Ignorant Receiver Structure
158(1)
9.1.2 Simulation Results: ICI-Ignorant Receiver
159(1)
9.1.3 Experimental Results: ICI-Ignorant Receiver
160(1)
9.2 Noniterative ICI-Aware Receiver
161(3)
9.2.1 Noniterative ICI-Aware Receiver Structure
162(1)
9.2.2 Simulation Results: ICI-Aware Receiver
163(1)
9.2.3 Experimental Results: ICI-Aware Receiver
164(1)
9.3 Iterative Receiver Processing
164(2)
9.3.1 Iterative ICI-Ignorant Receiver
165(1)
9.3.2 Iterative ICI-Aware Receiver
165(1)
9.4 ICI-Progressive Receiver
166(2)
9.5 Simulation Results: ICI-Progressive Receiver
168(3)
9.6 Experimental Results: ICI-Progressive Receiver
171(4)
9.6.1 BLER Performance
171(1)
9.6.2 Environmental Impact
171(3)
9.6.3 Progressive versus Iterative ICI-Aware Receivers
174(1)
9.7 Discussion
175(1)
9.8 Bibliographical Notes
175(2)
10 OFDM Receiver with Clustered Channel Adaptation
177(18)
10.1 Illustration of Channel Dynamics
177(1)
10.2 Modeling Cluster-Based Block-to-Block Channel Variation
178(2)
10.3 Cluster-Adaptation Based Block-to-Block Receiver
180(6)
10.3.1 Cluster Offset Estimation and Compensation
181(3)
10.3.2 Cluster-Adaptation Based Sparse Channel Estimation
184(2)
10.3.3 Channel Re-estimation and Cluster Variance Update
186(1)
10.4 Experimental Results: MACE10
186(4)
10.4.1 BLER Performance with an Overall Resampling
187(1)
10.4.2 BLER Performance with Refined Resampling
188(2)
10.5 Experimental Results: SPACE08
190(3)
10.6 Discussion
193(1)
10.7 Bibliographical Notes
193(2)
11 OFDM in Deep Water Horizontal Communications
195(20)
11.1 System Model for Deep Water Horizontal Communications
196(3)
11.1.1 Transmitted Signal
197(1)
11.1.2 Modeling Clustered Multipath Channel
197(1)
11.1.3 Received Signal
198(1)
11.2 Decision-Feedback Based Receiver Design
199(1)
11.3 Factor-Graph Based Joint IBI/ICI Equalization
200(3)
11.3.1 Probabilistic Problem Formulation
200(2)
11.3.2 Factor-Graph Based Equalization
202(1)
11.4 Iterative Block-to-Block Receiver Processing
203(2)
11.5 Simulation Results
205(3)
11.6 Experimental Results in the AUTEC Environment
208(3)
11.7 Extension to Underwater Broadcasting Networks
211(3)
11.7.1 Underwater Broadcasting Networks
211(1)
11.7.2 Emulated Experimental Results: MACE10
211(3)
11.8 Bibliographical Notes
214(1)
12 OFDM Receiver with Parameterized External Interference Cancellation
215(16)
12.1 Interference Parameterization
215(2)
12.2 An Iterative OFDM Receiver with Interference Cancellation
217(4)
12.2.1 Initialization
219(1)
12.2.2 Interference Detection and Estimation
219(2)
12.2.3 Channel Estimation, Equalization and Channel Decoding
221(1)
12.2.4 Noise Variance Estimation
221(1)
12.3 Simulation Results
221(4)
12.3.1 Time-Invariant Channels
222(1)
12.3.2 Time-Varying Channels
223(1)
12.3.3 Performance of the Proposed Receiver with Different SIRs
224(1)
12.3.4 Interference Detection and Estimation
225(1)
12.4 Experimental Results: AUTEC10
225(2)
12.5 Emulated Results: SPACE08
227(2)
12.6 Discussion
229(1)
12.7 Bibliographical Notes
229(2)
13 Co-located MIMO OFDM
231(18)
13.1 ICI-Ignorant MIMO-OFDM System Model
232(1)
13.2 ICI-Ignorant MIMO-OFDM Receiver
233(1)
13.2.1 Noniterative ICI-Ignorant MIMO-OFDM Receiver
233(1)
13.2.2 Iterative ICI-Ignorant MIMO-OFDM Receiver
234(1)
13.3 Simulation Results: ICI-Ignorant MIMO OFDM
234(3)
13.4 SPACE08 Experimental Results: ICI-Ignorant MIMO OFDM
237(1)
13.5 ICI-Aware MIMO-OFDM System Model
237(1)
13.6 ICI-Progressive MIMO-OFDM Receiver
237(4)
13.6.1 Receiver Overview
239(1)
13.6.2 Sparse Channel Estimation and Noise Variance Estimation
240(1)
13.6.3 Joint ICI/CCI Equalization
240(1)
13.7 Simulation Results: ICI-Progressive MIMO OFDM
241(1)
13.8 SPACE08 Experiment: ICI-Progressive MIMO OFDM
242(2)
13.9 MACE10 Experiment: ICI-Progressive MIMO OFDM
244(2)
13.9.1 BLER Performance with Two Transmitters
244(2)
13.9.2 BLER Performance with Three and Four Transmitters
246(1)
13.10 Initialization for the ICI-Progressive MIMO OFDM
246(1)
13.11 Bibliographical Notes
246(3)
14 Distributed MIMO OFDM
249(16)
14.1 System Model
250(1)
14.2 Multiple-Resampling Front-End Processing
251(1)
14.3 Multiuser Detection (MUD) Based Iterative Receiver
252(3)
14.3.1 Pre-processing with Frequency-Domain Oversampling
252(2)
14.3.2 Joint Channel Estimation
254(1)
14.3.3 Multiuser Data Detection and Channel Decoding
255(1)
14.4 Single-User Detection (SUD) Based Iterative Receiver
255(2)
14.4.1 Single-User Decoding
255(1)
14.4.2 MUI Construction
256(1)
14.5 An Emulated Two-User System Using MACE10 Data
257(3)
14.5.1 MUD-Based Receiver with and without Frequency-Domain Oversampling
258(1)
14.5.2 Performance of SUD- and MUD-Based Receivers
258(2)
14.6 Emulated MIMO OFDM with MACE10 and SPACE08 Data
260(3)
14.6.1 One Mobile Single-Transmitter User plus One Stationary Two-Transmitter User
261(1)
14.6.2 One Mobile Single-Transmitter User plus One Stationary Three-Transmitter User
262(1)
14.6.3 Two Mobile Single-Transmitter Users plus One Stationary Two-Transmitter User
263(1)
14.7 Bibliographical Notes
263(2)
15 Asynchronous Multiuser OFDM
265(20)
15.1 System Model for Asynchronous Multiuser OFDM
266(1)
15.2 Overlapped Truncation and Interference Aggregation
267(2)
15.2.1 Overlapped Truncation
267(1)
15.2.2 Interference Aggregation
268(1)
15.3 An Asynchronous Multiuser OFDM Receiver
269(6)
15.3.1 The Overall Receiver Structure
269(1)
15.5.2 Interblock Interference Subtraction
270(1)
15.3.3 Time-to-Frequency-Domain Conversion
271(2)
15.3.4 Iterative Multiuser Reception and Residual Interference Cancellation
273(1)
15.3.5 Interference Reconstruction
274(1)
15.4 Investigation on Multiuser Asynchronism in an Example Network
275(1)
15.5 Simulation Results
276(5)
15.5.1 Two-User Systems with Time-Varying Channels
277(2)
15.5.2 Multiuser Systems with Time-Invariant Channels
279(2)
15.6 Emulated Results: MACE10
281(3)
15.7 Bibliographical Notes
284(1)
16 OFDM in Relay Channels
285(18)
16.1 Dynamic Coded Cooperation in a Single-Relay Network
285(4)
16.1.1 Relay Operations
286(2)
16.1.2 Receiver Processing at the Destination
288(1)
16.1.3 Discussion
289(1)
16.2 A Design Example Based on Rate-Compatible Channel Coding
289(3)
16.2.1 Code Design
289(2)
16.2.2 Simulation Results
291(1)
16.3 A Design Example Based on Layered Erasure- and Error-Correction Coding
292(7)
16.3.1 Code Design
292(1)
16.3.2 Implementation
293(1)
16.3.3 An Experiment in Swimming Pool
293(3)
16.3.4 A Sea Experiment
296(3)
16.4 Dynamic Block Cycling over a Line Network
299(3)
16.4.1 Hop-by-Hop Relay and Turbo Relay
299(1)
16.4.2 Dynamic Block-Cycling Transmissions
300(2)
16.4.3 Discussion
302(1)
16.5 Bibliographical Notes
302(1)
17 OFDM-Modulated Physical-Layer Network Coding
303(14)
17.1 System Model for the OFDM-Modulated PLNC
305(1)
17.2 Three Iterative OFDM Receivers
306(3)
17.2.1 Iterative Separate Detection and Decoding
306(1)
17.2.2 Iterative XOR-ed PLNC Detection and Decoding
307(2)
17.2.3 Iterative Generalized PLNC Detection and Decoding
309(1)
17.3 Outage Probability Bounds in Time-Invariant Channels
309(1)
17.4 Simulation Results
310(4)
17.4.1 The Single-Path Time-Invariant Channel
311(1)
17.4.2 The Multipath Time-Invariant Channel
311(2)
17.4.3 The Multipath Time-Varying Channel
313(1)
17.5 Experimental Results: SPACE08
314(1)
17.6 Bibliographical Notes
315(2)
18 OFDM Modem Development
317(6)
18.1 Components of an Acoustic Modem
317(1)
18.2 OFDM Acoustic Modem in Air
318(1)
18.3 OFDM Lab Modem
318(2)
18.4 AquaSeNT OFDM Modem
320(1)
18.5 Bibliographical Notes
321(2)
19 Underwater Ranging and Localization
323(22)
19.1 Ranging
324(1)
19.1.1 One-Way Signaling
324(1)
19.1.2 Two-Way Signaling
324(1)
19.1.3 Challenges for High-Precision Ranging
325(1)
19.2 Underwater GPS
325(11)
19.2.1 System Overview
325(1)
19.2.2 One-Way Travel Time Estimation
326(1)
19.2.3 Localization
327(2)
19.2.4 Tracking Algorithms
329(5)
19.2.5 Simulation Results
334(1)
19.2.6 Field Test in a Local Lake
335(1)
19.3 On-Demand Asynchronous Localization
336(8)
19.3.1 Localization Procedure
337(1)
19.3.2 Localization Algorithm for the Initiator
338(2)
19.3.3 Localization Algorithm for a Passive Node
340(1)
19.3.4 Localization Performance Results in a Lake
341(3)
19.4 Bibliographical Notes
344(1)
Appendix A Compressive Sensing
345(8)
A.1 Compressive Sensing
346(2)
A.1.1 Sparse Representation
346(1)
A.1.2 Exactly and Approximately Sparse Signals
346(1)
A.1.3 Sensing
346(1)
A.1.4 Signal Recovery and RIP
347(1)
A.1.5 Sensing Matrices
348(1)
A.2 Sparse Recovery Algorithms
348(2)
A.2.1 Matching Pursuits
349(1)
A.2.2 e1-Norm Minimization
349(1)
A.3 Applications of Compressive Sensing
350(3)
A.3.1 Applications of Compressive Sensing in Communications
350(1)
A.3.2 Compressive Sensing in Underwater Acoustic Channels
351(2)
Appendix B Experiment Description
353(6)
B.1 SPACE08 Experiment
353(1)
B.2 MACE10 Experiment
354(5)
B.2.1 Experiment Setup
355(1)
B.2.2 Mobility Estimation
356(3)
References 359(24)
Index 383
S. Zhou, Associate Professor, Department of Electrical and Computer Engr., University of Connecticut, Storrs, USA Shengli Zhou received his Ph.D. degree in electrical engineering from the University of Minnesota (UMN), Minneapolis, in 2002. Dr. Zhou is a senior member of IEEE, and a member of Connecticut Academy of Science and Engineering (CASE). His general research interests lie in the areas of wireless communications and signal processing. For the last six years, he has focused on underwater acoustic communications and networking. For his work on underwater acoustic communications, he received the 2007 Office of Naval Research (ONR) Young Investigator Program (YIP) award and the 2007 Presidential Early Career Award for Scientists and Engineers (PECASE). He is so far the only UCONN faculty member to ever receive the prestigious PECASE award.

Z.-H. Wang, Ph.D Student, Department of Electrical and Computer Engineering, University of Connecticut, Storrs, USA Ms. Wang is a student member of IEEE. She serves as a technical reviewer for IEEE Journal of Oceanic Engineering, IEEE Transactions on Signal Processing, IEEE Transactions on Wireless Communications, and various conferences. Her research interests lie in the areas of communications, signal processing and detection, with recent focus on multicarrier modulation algorithms and signal processing for underwater acoustic communications and networking.