Atjaunināt sīkdatņu piekrišanu

E-grāmata: Off-Diagonal Bethe Ansatz for Exactly Solvable Models

  • Formāts: PDF+DRM
  • Izdošanas datums: 21-Apr-2015
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783662467565
  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 21-Apr-2015
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783662467565

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book serves as an introduction of the off-diagonal Bethe Ansatz method, an analytic theory for the eigenvalue problem of quantum integrable models. It also presents some fundamental knowledge about quantum integrability and the algebraic Bethe Ansatz method. Based on the intrinsic properties of R-matrix and K-matrices, the book introduces a systematic method to construct operator identities of transfer matrix. These identities allow one to establish the inhomogeneous T-Q relation formalism to obtain Bethe Ansatz equations and to retrieve corresponding eigenstates. Several longstanding models can thus be solved via this method since the lack of obvious reference states is made up. Both the exact results and the off-diagonal Bethe Ansatz method itself may have important applications in the fields of quantum field theory, low-dimensional condensed matter physics, statistical physics and cold atom systems.

Papildus informācija

In 2013, the authors made a fundamental generalization of the T-Q relation by adding an extra "inhomogeneous" term. Most notably, their new methods allow for the systematic exact solution of systems with "off-diagonal" boundaries. This book provides an excellent introduction to the new method of the off-diagonal Bethe Ansatz with applications. This monograph is destined to become a classic in the area and is highly recommended to any researcher with an interest in these topics. ---Prof. Paul A. Pearce, University of Melbourne In 2013, the authors made a significant breakthrough in the field of quantum integrable systems. The simple - yet far reaching - solution proposed by the authors was to introduce an inhomogeneous term in the T-Q equation. The authors proceeded to demonstrate that the off-diagonal Bethe Ansatz method had general applicability, by successfully tackling numerous previously-unsolved models. This volume provides an accessible exposition of this approach, which is likely to have an enduring impact. --- Prof. Rafael Nepomechie, University of Miami This book provides a detailed treatment of the off-diagonal Bethe Ansatz method, with special attention given to the inhomogeneous T-Q relation pioneered recently by the authors. We find the book worthy of special attention. ---Prof. J. H. H. Perk & Prof. H. Au-Yang, Oklahoma State University ...In this book the authors outline the approach for obtaining the eigenvalue spectrum of these models in terms of their off-diagonal Bethe Ansatz method. This method overcomes the problem of not having an obvious reference state, which has long been the stumbling block for solving this class of models. The authors provide a pedagogic and extensive account, treating a number of key models. All these ingredients add up to a classic new book in a fundamentally important area of physics. ---Prof. Murray Batchelor, Chongqing University & Australian National University
1 Overview
1(22)
1.1 Integrability and Yang-Baxter Equation
2(3)
1.2 Integrable Boundary Conditions
5(3)
1.3 Basic Ingredients of the Coordinate Bethe Ansatz
8(2)
1.4 T --- Q Relation
10(1)
1.5 Basic Ingredients of the Off-Diagonal Bethe Ansatz
11(12)
1.5.1 Functional Relations of the XXX Spin - 1/2 Chain
12(2)
1.5.2 Two Theorems on the Complete-Spectrum Characterization
14(1)
1.5.3 Inhomogeneous T --- Q Relation
15(4)
References
19(4)
2 The Algebraic Bethe Ansatz
23(44)
2.1 The Periodic Heisenberg Spin Chain
23(17)
2.1.1 The Algebraic Bethe Ansatz
23(5)
2.1.2 Selection Rules of the Bethe Roots
28(1)
2.1.3 Ground State
29(2)
2.1.4 Spinon Excitations
31(1)
2.1.5 String Solutions
32(3)
2.1.6 Thermodynamics
35(5)
2.2 The Open Heisenberg Spin Chain
40(11)
2.2.1 The Algebraic Bethe Ansatz
40(9)
2.2.2 Surface Energy and Boundary Bound States
49(2)
2.3 Nested Algebraic Bethe Ansatz for SU (n)-Invariant Spin Chain
51(5)
2.4 Quantum Determinant, Projectors and Fusion
56(3)
2.5 Sklyanin's Separation of Variables
59(8)
2.5.1 SoV Basis
59(2)
2.5.2 Functional Relations
61(1)
2.5.3 Operator Decompositions
62(1)
References
63(4)
3 The Periodic Anisotropic Spin - 1/2 Chains
67(26)
3.1 The XXZ Model
68(8)
3.1.1 The Hamiltonian
68(1)
3.1.2 Operator Product Identities of the Transfer Matrix
69(1)
3.1.3 λ (u) as a Trigonometric Polynomial
70(2)
3.1.4 Functional T --- Q Relation and Bethe Ansatz Equations
72(1)
3.1.5 Ground States and Elementary Excitations
73(3)
3.2 The XYZ Model
76(17)
3.2.1 The Hamiltonian
76(2)
3.2.2 Operator Product Identities
78(1)
3.2.3 The Inhomogeneous T --- Q Relation
79(2)
3.2.4 Even N Case
81(1)
3.2.5 Odd N Case
82(2)
3.2.6 An Alternative Inhomogeneous T --- Q Relation
84(5)
References
89(4)
4 The Spin - 1/2 Torus
93(28)
4.1 Z2-symmetry and the Model Hamiltonian
93(2)
4.2 Operator Product Identities
95(1)
4.3 The Inhomogeneous T --- Q Relation
96(3)
4.4 An Alternative Inhomogeneous T --- Q Relation
99(3)
4.5 The Scalar Product Fn (θ1, ... θn)
102(2)
4.6 Retrieving the Eigenstates
104(8)
4.6.1 SoV Basis of the Hilbert Space
105(2)
4.6.2 Bethe States
107(4)
4.6.3 Another Basis
111(1)
4.7 Physical Properties for η = iπ/2
112(2)
4.8 The XYZ Spin Torus
114(7)
References
118(3)
5 The Spin - 1/2 Chains with Arbitrary Boundary Fields
121(76)
5.1 Spectrum of the Open XXX Spin - 1/2 Chain
122(9)
5.1.1 The Model Hamiltonian
122(1)
5.1.2 Crossing Symmetry of the Transfer Matrix
123(1)
5.1.3 Operator Product Identities
124(2)
5.1.4 The Inhomogeneous T --- Q Relation
126(3)
5.1.5 An Alternative Inhomogeneous T --- Q Relation
129(2)
5.2 Bethe States of the Open XXX Spin - 1/2 Chain
131(10)
5.2.1 Gauge Transformation of the Monodromy Matrices
131(4)
5.2.2 SoV Basis
135(2)
5.2.3 The Scalar Product Fn (θp1, ..., θpn)
137(2)
5.2.4 The Inner Product (0|θp1, ..., θpn)
139(1)
5.2.5 Bethe States
140(1)
5.3 Spectrum of the Open XXZ Spin - 1/2 Chain
141(9)
5.3.1 The Model Hamiltonian
141(1)
5.3.2 Functional Relations
142(1)
5.3.3 The Inhomogeneous T --- Q Relation
143(6)
5.3.4 An Alternative Inhomogeneous T --- Q Relation
149(1)
5.4 Thermodynamic Limit and Surface Energy
150(13)
5.4.1 Reduced BAEs for Imaginary η
150(2)
5.4.2 Surface Energy in the Critical Phase
152(5)
5.4.3 Finite-Size Corrections
157(1)
5.4.4 Surface Energy in the Gapped Phase
158(5)
5.5 Bethe States of the Open XXZ Spin Chain
163(24)
5.5.1 Local Gauge Matrices
163(3)
5.5.2 Commutation Relations
166(4)
5.5.3 Right SoV Basis
170(3)
5.5.4 Left SoV Basis
173(3)
5.5.5 The Scalar Product (θp1, ..., θpn;m0|Ψ)
176(2)
5.5.6 The Inner Product (θp1, ..., θpn;m0|m0)
178(2)
5.5.7 Bethe States
180(2)
5.5.8 Degenerate Case
182(5)
5.6 The Open XYZ Spin - 1/2 chain
187(10)
5.6.1 The Model Hamiltonian
187(2)
5.6.2 Operator Product Identities
189(3)
5.6.3 The Inhomogeneous T --- Q Relation
192(3)
References
195(2)
6 The One-Dimensional Hubbard Model
197(22)
6.1 The Periodic Hubbard Model
198(7)
6.1.1 Coordinate Bethe Ansatz
198(3)
6.1.2 Solution of the Second Eigenvalue Problem
201(1)
6.1.3 Ground State Energy and Mott Gap at Half Filling
202(3)
6.2 Hubbard Model with Open Boundaries
205(6)
6.2.1 Coordinate Bethe Ansatz
205(3)
6.2.2 Off-Diagonal Bethe Ansatz
208(3)
6.3 The Super-symmetric t --- J Model with Non-diagonal Boundaries
211(8)
6.3.1 Coordinate Bethe Ansatz
211(3)
6.3.2 Off-Diagonal Bethe Ansatz
214(1)
References
215(4)
7 The Nested Off-Diagonal Bethe Ansatz
219(32)
7.1 The Fusion Procedure
219(5)
7.1.1 Fundamental Fusion Relations
219(4)
7.1.2 The Quantum Determinant
223(1)
7.2 The Periodic SU(n) Spin Chain
224(4)
7.2.1 Operator Product Identities
224(2)
7.2.2 Nested T -- Q Relation
226(2)
7.3 Fundamental Relations of the Open SU(n) Spin Chain
228(9)
7.3.1 The Model Hamiltonian
228(1)
7.3.2 The Fusion Procedure
229(4)
7.3.3 Operator Product Identities and Functional Relations
233(3)
7.3.4 Asymptotic Behavior of the Transfer Matrices
236(1)
7.4 Solution of the SU(3) Case
237(4)
7.4.1 Functional Relations
237(2)
7.4.2 The Nested Inhomogeneous T --- Q Relation
239(2)
7.5 Solution of the SU(4) Case
241(6)
7.6 Solution of the SU(n) Case
247(4)
References
249(2)
8 The Hierarchical Off-Diagonal Bethe Ansatz
251(26)
8.1 The Fusion Procedure
252(4)
8.1.1 Fusion of the R-Matrices and the K-Matrices
252(3)
8.1.2 Fused Transfer Matrices
255(1)
8.2 Operator Identities
256(4)
8.3 The Inhomogeneous T -- Q Relation
260(4)
8.4 Completeness of the Solutions
264(4)
8.5 The Nonlinear Schrodinger Model
268(9)
8.5.1 The Model Correspondence
268(2)
8.5.2 Operator Identities
270(2)
8.5.3 T -- Q Relation
272(1)
References
273(4)
9 The Izergin-Korepin Model
277(18)
9.1 The Model with Generic Open Boundaries
277(4)
9.2 Operator Product Identities
281(3)
9.3 Crossing Symmetry and Asymptotic Behavior
284(2)
9.4 The Inhomogeneous T -- Q Relation
286(4)
9.5 Reduced T -- Q Relation for Constrained Boundaries
290(2)
9.6 Periodic Boundary Case
292(3)
References
293(2)
Index 295
Prof. Yupeng Wang obtained his Ph.D in Condensed Matter Physics from Institute of Physics, Chinese Academy of Science (IOP CAS) in 1994. He joined IOP CAS as a professor in 1999, and has been the director of IOP since 2007. He is also the Vice-president of Chinese Physical Society. His research interests include Exactly solvable models in statistical mechanics and solid state physics, Quantum many-body physics, Ultra-cold atomic physics and Condensed matter theory. He has published about 150 papers in SCI indexed journals.

Prof. Wen-Li Yang obtained his Ph.D in Theoretical Physics from Northwest University of China in 1996. He was the Humboldt Foundation Research Fellow in Physikalisches Institut der Universitat Bonn during 2000-2002, Research Fellow in Kyoto University during 2002-2004, Research Associate/Fellow in University of Queensland during 2004-2009. Currently he is a professor in Northwest University in China. His main research areas are Infinite-dimensional Lie (super) algebras, (Classical) Quantum integrable systems and strongly correlated fermion systems. He has published more than 90 refereed journal articles and 8 conference papers/book chapters.

Prof. Junpeng Cao obtained his Ph.D in Theoretical Physics from Northwest University of China in 2001. He was a Postdoctoral fellow in IOP CAS during 2001-2003. He joined IOP in 2003, and was appointed as a professor of IOP in 2009. He mainly works on the field of Exactly solvable models in statistical mechanics and solid state physics. He has published 52 refereed journal articles.

Prof. Kangjie Shi obtained his Ph.D in Theoretical Physics from University of Illinois at Urbana-Champaign in 1987. He joined Northwest University of China as a professor in 1987. He mainly works on quantum (super) groups and Quantum integrable systems. He has published more than 40 refereed journal articles.