Atjaunināt sīkdatņu piekrišanu

E-grāmata: Offshore Pipelines: Design, Installation, and Maintenance

(Senior engineer, ChevronTexaco), (Formerly Professor, University of Louisiana at ), (Professor, Petroleum Engineering Department, University of Louisiana, Lafayette and Director, Center for Optimization of Petroleum Systems (COPS), USA),
  • Formāts: PDF+DRM
  • Izdošanas datums: 24-Jul-2013
  • Izdevniecība: Gulf Professional Publishing
  • Valoda: eng
  • ISBN-13: 9780123984920
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 64,23 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 24-Jul-2013
  • Izdevniecība: Gulf Professional Publishing
  • Valoda: eng
  • ISBN-13: 9780123984920
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The development of oil and gas fields offshore requires specialized pipeline equipment. The structures must be strong enough to with stand the harshest environments, and ensure that production is not interrupted and remains economically feasible. However, recent events in the Gulf of Mexico have placed a new importance on maintenance and reliability. This new section; Condition Based Maintenance (CBM), introduces the subject of maintenance to Offshore Pipelines: Design, Installation, Commissioning, 2nd Edition.

Two of the main objectives of CBM is maximizing reliability while preventing major or minor equipment malfunction and minimizing maintenance costs. In this new section, the authors deal with the multi-objective condition based maintenance optimization problem. CBM provides two major advantages: (1) an efficient approach for weighting maintenance objectives, and (2) a method for specifying physical methods for achieving those objectives. Maintenance cost and reliability objectives are calculated based on proportional hazards model and a control limit CBM replacement policy.

Written primarily for engineers and management personnel working on offshore and deepwater oil and gas pipelines, this book covers the fundamentals needed to design, Install, and commission pipeline projects. This new section along with a thorough update of the existing chapters represents a 30% increase in information over the previous edition.

  • Covers offshore maintenance and maintenance support system
  • Provides the fundamentals needed to design, Install, and commission pipeline project
  • Methods and tools to deliver cost effective maintenance cost and system reliability

Recenzijas

"The authors are the most respected names in the area of designing, installing, testing, and operating submarine pipelinesIt is a useful book for engineers and developers challenged with bringing oil and gas onshore. I would recommend that if you work in the offshore pipeline industry, you have this practical reference available." --Saeid Mokhatab, Chairman of Natural Gas Engineering Editorial Advisory Board

Papildus informācija

Offers cost-effective approaches for developing and maintaining subsea and deepwater pipeline systems
Preface xiii
1 Introduction
1(10)
Boyun Guo
Shanhong Song
Ali Ghalambor
1.1 Overview
1(1)
1.2 Pipeline Design
2(2)
1.3 Pipeline Installation
4(3)
1.4 Pipeline Operations
7(3)
References
10(1)
Part I Pipeline Design 11(122)
Boyun Guo
Shanhong Song
Ali Ghalambor
2 General Design Information
13(8)
2.1 Introduction
13(1)
2.2 Design Data
13(7)
2.2.1 Reservoir Performance
13(3)
2.2.2 Fluid and Water Compositions
16(1)
2.2.3 Fluid PVT Properties
16(1)
2.2.4 Solid Production
17(1)
2.2.5 Seafloor Bathymetry/Geotechnical Survey Data
18(1)
2.2.6 Oceanographic Data
19(1)
2.2.7 Other Data
20(1)
References
20(1)
3 Diameter and Wall Thickness
21(8)
3.1 Introduction
21(1)
3.2 Design Procedure
22(1)
3.3 Design Codes
22(5)
3.3.1 Pipeline Design for Internal Pressure
22(1)
3.3.2 Pipeline Design for External Pressure
23(3)
3.3.3 Corrosion Allowance
26(1)
3.3.4 Check for Hydrotest Condition
26(1)
References
27(2)
4 Hydrodynamic Stability of Pipelines
29(24)
4.1 Introduction
29(1)
4.2 Analysis Procedure
29(2)
4.3 Methodology
31(13)
4.3.1 Definitions of Environmental Criteria
31(4)
4.3.2 Hydrodynamic Coefficient Selection
35(6)
4.3.3 Hydrodynamic Force Calculation
41(1)
4.3.4 Hydrodynamic Stability Assessment
41(3)
4.4 Partially Buried Pipelines
44(6)
References
50(1)
Further Reading
51(2)
5 Pipeline Span
53(12)
5.1 Introduction
53(1)
5.2 Problem Description
53(2)
5.2.1 Free Span
53(1)
5.2.2 In-Line Oscillations
54(1)
5.2.3 Cross-Flow Oscillations
54(1)
5.2.4 Galloping
54(1)
5.3 Design Considerations
55(3)
5.3.1 Dynamic Stresses
55(1)
5.3.2 Vortex-Shedding Frequency
55(1)
5.3.3 Pipeline Natural Frequency
55(1)
5.3.4 Reduced Velocity
56(2)
5.3.5 Stability Parameter
58(1)
5.3.6 Critical Span Length
58(1)
5.4 Design Criteria
58(3)
5.4.1 General Considerations
58(1)
5.4.2 Current Velocity Selection
58(1)
5.4.3 End Condition Selection
59(1)
5.4.4 Design Parameters
59(1)
5.4.5 Design Steps
59(1)
5.4.6 Example Calculation
60(1)
5.5 Fatigue Analysis Guideline
61(2)
References
63(1)
Further Reading
63(2)
6 Operating Stresses
65(14)
6.1 Introduction
65(1)
6.2 Operating Forces
65(9)
6.2.1 Internal Pressure Stresses
65(3)
6.2.2 Thermal Expansion Stresses
68(1)
6.2.3 Combined Pressure and Temperature
69(5)
6.3 Stress-Analysis-Based Design
74(4)
6.3.1 Analysis Procedure
74(1)
6.3.2 Code Requirements
75(1)
6.3.3 Example Calculation
76(2)
References
78(1)
7 Pipeline Riser Design
79(24)
7.1 Introduction
79(1)
7.2 Design Procedure
79(2)
7.3 Load Cases
81(4)
7.3.1 Functional Loads
82(2)
7.3.2 Environmental Loads
84(1)
7.3.3 Installation Loads
85(1)
7.4 Wall Thickness
85(1)
7.5 Allowable Stress Criteria
85(2)
7.6 Dynamic and Fatigue Analysis
87(2)
7.7 Corrosion Control Consideration
89(1)
7.8 Riser Bends
90(1)
7.9 Riser Clamps
90(13)
7.9.1 Design Overview
91(11)
7.9.2 Design Analyses
102(1)
8 Pipeline External Corrosion Protection
103(10)
8.1 Introduction
103(1)
8.2 External Pipe Coatings
103(3)
8.2.1 Single-Layer Coating
104(1)
8.2.2 Multilayer Coatings
105(1)
8.2.3 Standard Organizations with Specifications Related to Pipe Coatings
106(1)
8.3 Cathodic Protection
106(5)
8.3.1 CP Design
107(4)
Further Reading
111(2)
9 Pipeline Insulation
113(12)
9.1 Introduction
113(1)
9.2 Insulation Materials
113(2)
9.3 PIP Insulation
115(1)
9.4 General Requirements
115(3)
9.4.1 Dry Insulations
117(1)
9.4.2 Wet Insulations
118(1)
9.5 Heat Transfer Analysis-An Example
118(5)
References
123(1)
Further Reading
124(1)
10 Introduction to Flexible Pipelines
125(10)
10.1 Introduction
125(2)
10.2 Flexible Pipe Manufacturers
127(2)
10.2.1 NKT Flexibles
127(1)
10.2.2 Wellstream
128(1)
10.2.3 Technip
129(1)
10.3 Basics of Flexible Riser Analysis and Design
129(2)
Further Reading
131(2)
Part II Pipeline Installation 133(34)
Boyun Guo
Shanhong Song
Ali Ghalambor
11 Pipeline Installation Methods
135(12)
11.1 Introduction
135(1)
11.1.1 Pipeline Installation Design Codes
135(1)
11.2 Lay Methods
136(6)
11.2.1 S-Lay
136(1)
11.2.2 J-Lay
137(2)
11.2.3 Reel Lay
139(3)
11.3 Tow Methods
142(3)
11.3.1 Bottom Tow
143(1)
11.3.2 Off-Bottom Tow
144(1)
11.3.3 Mid-Depth Tow
145(1)
11.3.4 Surface Tow
145(1)
Further Reading
145(2)
12 Installation Bending Stress Control
147(8)
12.1 Introduction
147(1)
12.2 Lay Stresses
147(6)
12.2.1 Overbend Stress
149(1)
12.2.2 Sagbend Stress/Strain
150(3)
References
153(1)
Further Reading
153(2)
13 Pipeline On-Bottom Stability Control
155(14)
13.1 Introduction
155(1)
13.2 Hydrodynamic Parameters
156(2)
13.3 Soil Parameters
158(4)
13.3.1 Cohesive Soils
159(2)
13.3.2 Noncohesive Soils
161(1)
13.4 Stability Analysis Guidelines
162(1)
13.4.1 PRCI Pipeline Stability Program
162(1)
13.4.2 DnV RP E305
162(1)
13.5 Trenching/Jetting
163(1)
References
164(1)
Further Reading
164(3)
Part III Pipeline Commissioning and Operations 167(88)
Boyun Guo
Shanhong Song
Ali Ghalambor
14 Pipeline Testing and Precommissioning
169(10)
14.1 Introduction
169(1)
14.2 Pipeline Precommissioning
170(7)
14.2.1 Pipeline Flooding, Cleaning, and Gauging Operations
170(2)
14.2.2 Pipeline Hydrotesting and Leak Testing
172(2)
14.2.3 Pipeline Dewatering, Drying, and Purging
174(3)
References
177(1)
Further Reading
177(2)
15 Flow Assurance
179(54)
15.1 Introduction
179(1)
15.2 Fluid Sampling and Characterizations
180(4)
15.2.1 Fluid Sampling
181(1)
15.2.2 PVT Measurements
182(1)
15.2.3 Specific Flow Assurance Analysis
182(1)
15.2.4 Fluid Characterizations
183(1)
15.3 Impacts of Produced Water on Flow Assurance
184(2)
15.4 Gas Hydrates
186(8)
15.4.1 Gas Hydrate Formation Curve
187(1)
15.4.2 Hydrate Inhibitors
188(3)
15.4.3 Hydrate Mitigation Strategies
191(3)
15.5 Wax Depositions
194(5)
15.5.1 Fundamental Concepts
194(1)
15.5.2 Wax Deposition Mechanisms
195(2)
15.5.3 Wax Mitigation Strategies
197(2)
15.6 Asphaltene Depositions
199(9)
15.6.1 Asphaltene Precipitation
199(3)
15.6.2 Onset of Asphaltene Precipitation
202(3)
15.6.3 Screening of Crude Oils for Asphaltene Precipitation-de Boer Plot
205(2)
15.6.4 Asphaltene Prevention and Remediation
207(1)
15.7 Inorganic Precipitates-Scales
208(6)
15.7.1 Fundamental Concepts
208(2)
15.7.2 Factors Affecting Scale Precipitation
210(1)
15.7.3 Scale Prevention and Control
211(3)
15.8 Corrosion
214(6)
15.8.1 Corrosion Fundamentals
215(3)
15.8.2 Corrosion Forms
218(1)
15.8.3 Corrosion Control
219(1)
15.9 Severe Slugging
220(8)
15.9.1 Severe Slugging Description
221(2)
15.9.2 Severe Slugging Prediction
223(2)
15.9.3 Severe Slugging Elimination
225(3)
References
228(3)
Further Reading
231(2)
16 Pigging Operations
233(24)
16.1 Introduction
233(1)
16.2 Pigging System
233(8)
16.2.1 Utility Pigs
234(4)
16.2.2 ILI Tools
238(1)
16.2.3 Gel Pigs
238(1)
16.2.4 Launcher and Receiver
239(2)
16.3 Selection of Pigs
241(5)
16.4 Major Applications
246(4)
16.4.1 Construction
247(1)
16.4.2 Operation
248(1)
16.4.3 Inspection
249(1)
16.4.4 Maintenance
249(1)
16.5 Pigging Procedure
250(3)
Reference
253(1)
Further Reading
253(2)
Part IV Condition-Based Maintenance 255(84)
Tian Ran Lin
Yong Sun
17 An Introduction to Condition-Based Maintenance
257(42)
17.1 Introduction
257(2)
17.2 Condition Monitoring
259(16)
17.2.1 Data Collection and Condition Monitoring Techniques
259(5)
17.2.2 Signal Processing and Analysis
264(10)
17.2.3 Diagnostics and Prognostics
274(1)
17.3 Condition-Based Asset Health Prediction Models and Methods
275(17)
17.3.1 Markov Chain
275(5)
17.3.2 Gamma-Based State Space Model
280(4)
17.3.3 Additive Hazard Model
284(4)
17.3.4 Artificial Neural-Network-Based Prediction Approach
288(4)
17.4 CBM Decision Making
292(3)
References
295(4)
18 Pipeline Vibration and Condition Based Maintenance
299(40)
18.1 Introduction
299(4)
18.2 Pipeline Vibration
303(12)
18.2.1 Pipeline Vibration Analysis Using Beam Formulations
303(1)
18.2.2 Boundary Conditions and Natural Frequencies of a Pipeline Segment
304(3)
18.2.3 Free Span Length of a Pipeline
307(1)
18.2.4 Effects of Flowing Fluid on Pipeline Vibration
308(1)
18.2.5 Effects of Axial Force
309(2)
18.2.6 Free Vibration of Offshore Pipelines Considering the Added Mass Effect
311(1)
18.2.7 Flexural Vibration of Subsea Pipelines
312(2)
18.2.8 Measures to Mitigate Pipeline Vibration
314(1)
18.3 Condition Based Maintenance
315(21)
18.3.1 Objectives of Optimizing CBM
317(2)
18.3.2 Optimization of the Next Maintenance Time
319(10)
18.3.3 Optimization of Long-Term Maintenance Activities
329(7)
References
336(3)
Appendix A: Gas-Liquid Multiphase Flow in Pipeline 339(28)
Appendix B: Steady and Transient Solutions for Pipeline Temperature 367(8)
Appendix C: Strength De-Rating of Old Pipelines 375(6)
Index 381
Boyun Guo is a Professor at the University of Louisiana at Lafayette in the Petroleum Engineering Department and Director of the Center for Optimization of Petroleum Systems (COPS) of the Energy Institute of Louisiana (EIL). He has 40 years of work experience in the oil and gas industry and academia. He is the principal author of 11 books and author/coauthor of over 150 research papers. He holds a BS degree in Engineering Science from Daqing Petroleum Institute in China, MS degree in Petroleum Engineering from Montana College of Mineral Science and Technology, and a PhD degree in Petroleum Engineering from New Mexico Institute of Mining and Technology. Ali Ghalambor, P.E. is currently an international consultant with more than 45 years of industrial and academic experience. He served as the API Endowed Professor, Head of the Petroleum Engineering Department, and Director of the Energy Institute at the University of Louisiana at Lafayette.