|
|
1 | (6) |
|
|
2 | (1) |
|
1.2 Relation to Existing Work |
|
|
3 | (1) |
|
|
4 | (3) |
|
|
4 | (3) |
|
2 Spectral Dimensionality Reduction |
|
|
7 | (16) |
|
2.1 A General Setting for Spectral Dimensionality Reduction |
|
|
7 | (2) |
|
2.2 Linear Spectral Dimensionality Reduction |
|
|
9 | (2) |
|
2.2.1 Principal Components Analysis (PCA) |
|
|
9 | (1) |
|
2.2.2 Classical Multidimensional Scaling (MDS) |
|
|
10 | (1) |
|
2.3 Nonlinear Spectral Dimensionality Reduction |
|
|
11 | (9) |
|
|
12 | (1) |
|
2.3.2 Maximum Variance Unfolding (MVU) |
|
|
13 | (1) |
|
|
14 | (2) |
|
2.3.4 Locally Linear Embedding (LLE) |
|
|
16 | (1) |
|
2.3.5 Laplacian Eigenmaps |
|
|
17 | (2) |
|
2.3.6 Local Tangent Space Alignment (LTSA) |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
21 | (2) |
|
|
21 | (2) |
|
|
23 | (18) |
|
3.1 Overview of Neighbourhood Graph Construction |
|
|
24 | (1) |
|
3.2 Building Neighbourhood Graphs |
|
|
25 | (5) |
|
3.2.1 Optimised Neighbourhood Methods |
|
|
26 | (2) |
|
3.2.2 Adaptive Estimation Methods |
|
|
28 | (2) |
|
3.3 Topological and Multi-manifold Considerations |
|
|
30 | (4) |
|
3.3.1 Manifolds with Loops |
|
|
31 | (1) |
|
|
32 | (2) |
|
|
34 | (4) |
|
3.4.1 Pre-processing Methods |
|
|
35 | (1) |
|
3.4.2 Noise Handling Extensions |
|
|
36 | (2) |
|
|
38 | (3) |
|
|
38 | (3) |
|
4 Intrinsic Dimensionality |
|
|
41 | (12) |
|
|
41 | (1) |
|
4.2 Estimating Dimensionality: The Spectral Gap |
|
|
42 | (2) |
|
4.3 Estimating Dimensionality: Other Methods |
|
|
44 | (5) |
|
|
44 | (3) |
|
|
47 | (2) |
|
4.4 Choosing Techniques and Limitations |
|
|
49 | (1) |
|
|
50 | (3) |
|
|
51 | (2) |
|
5 Incorporating New Points |
|
|
53 | (16) |
|
5.1 Natural Incorporation |
|
|
53 | (1) |
|
5.2 Out-of-Sample Extensions |
|
|
54 | (6) |
|
|
55 | (2) |
|
|
57 | (2) |
|
|
59 | (1) |
|
|
60 | (1) |
|
|
61 | (5) |
|
|
62 | (1) |
|
|
62 | (2) |
|
|
64 | (1) |
|
5.4.4 Incremental Laplacian Eigenmaps |
|
|
64 | (1) |
|
5.4.5 A Unified Framework |
|
|
65 | (1) |
|
|
66 | (3) |
|
|
67 | (2) |
|
|
69 | (14) |
|
6.1 Computational Complexity and Bottlenecks |
|
|
69 | (4) |
|
6.1.1 Complexity of Spectral Dimensionality Reduction Algorithms |
|
|
70 | (3) |
|
|
73 | (1) |
|
|
73 | (2) |
|
|
74 | (1) |
|
6.3 Other Approximation Methods |
|
|
75 | (3) |
|
|
75 | (1) |
|
6.3.2 Laplacian Eigenmap Variants |
|
|
76 | (1) |
|
6.3.3 Maximum Variance Unfolding Variants |
|
|
77 | (1) |
|
6.3.4 Diffusion Maps Variants |
|
|
77 | (1) |
|
6.4 Using Brute Force: GPU and Parallel Implementations |
|
|
78 | (1) |
|
|
79 | (4) |
|
|
79 | (4) |
|
|
83 | (8) |
|
7.1 Digging Deeper: How do You Measure Success? |
|
|
83 | (2) |
|
7.2 Beyond Spectral Dimensionality Reduction |
|
|
85 | (1) |
|
7.2.1 Manifold Learning and ANNs |
|
|
85 | (1) |
|
7.2.2 Beyond Dimensionality Reduction |
|
|
85 | (1) |
|
|
86 | (1) |
|
|
87 | (1) |
|
|
88 | (1) |
|
|
88 | (3) |
|
|
89 | (2) |
Index |
|
91 | |