Atjaunināt sīkdatņu piekrišanu

E-grāmata: Opera House Acoustics Based on Subjective Preference Theory

  • Formāts: PDF+DRM
  • Sērija : Mathematics for Industry 12
  • Izdošanas datums: 26-Feb-2015
  • Izdevniecība: Springer Verlag, Japan
  • Valoda: eng
  • ISBN-13: 9784431554233
  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Mathematics for Industry 12
  • Izdošanas datums: 26-Feb-2015
  • Izdevniecība: Springer Verlag, Japan
  • Valoda: eng
  • ISBN-13: 9784431554233

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book focuses on opera house acoustics based on subjective preference theory; it targets researchers in acoustics and vision who are working in physics, psychology and brain physiology. This book helps readers to understand any subjective attributes in relation to objective parameters based on the powerful and workable model of the auditory system.

It is reconfirmed here that the well-known Helmholtz theory, which was based on a peripheral model of the auditory system, may not well describe pitch, timbre and duration as well as the spatial sensations described in this book, nor overall responses such as subjective preference of sound fields and the annoyance of environmental noise.

Recenzijas

This books focus is on opera house acoustics based on subjective preference theory. The various mathematical concepts are clearly and succinctly summarized in combination with drawings and diagrams. This combination of mathematical concepts illustrated by visuals creates a content that can be understood by designers and performers that do not easily use mathematics, as well as engineers and mathematicians. (Bonnie Schnitta, Noise Control Engineering Journal, Vol. 65 (1), January-February, 2017)

1 Introduction 1(2)
2 Analyses of Temporal Factors of a Source Signal 3(12)
2.1 Analyses of a Source Signal
3(6)
2.1.1 Autocorrelation Function (ACF) of a Sound Source
3(1)
2.1.2 Running ACF
4(1)
2.1.3 Analyses of the Running ACF
4(3)
2.1.4 Temporal Factors Extracted from the Running ACF
7(2)
2.1.5 Minimum Values of the Effective Duration Extracted from Running ACF
9(1)
2.2 Auditory Temporal Window
9(1)
2.3 Vocal Source Signal
10(3)
2.4 Running ACF of Piano Signal with Different Performance Style
13(2)
3 Formulation and Simulation of the Sound Field in an Enclosure 15(12)
3.1 Sound Transmission from a Point Source to Ear Entrances in an Enclosure
15(1)
3.2 Orthogonal Factors of the Sound Field
16(4)
3.2.1 Temporal Factors of the Sound Field
16(1)
3.2.2 Spatial Factors of the Sound Field
17(2)
3.2.3 Auditory Time Window for the IACF Processing
19(1)
3.3 Simulation of Sound Localization
20(3)
3.4 Simulation of the Reverberant Sound Field
23(4)
4 Model of Auditory-Brain System 27(18)
4.1 Neural Evidences in Auditory-Pathway and Brain System
27(3)
4.1.1 Physical System
27(1)
4.1.2 ABR from the Left and Right Auditory Pathways
27(3)
4.2 Slow-Vertex Responses (SVR) Corresponding to Subjective Preference
30(4)
4.3 Response on Electro-Encephalogram (EEG) and Magneto-Encephalographic (MEG) Corresponding to Subjective Preference
34(7)
4.3.1 EEG in Response to Change of Δt1
34(2)
4.3.2 MEG in Response to Change of Δt1
36(2)
4.3.3 EEG in Response to Change of Tsub
38(2)
4.3.4 EEG in Response to Change of the IACC
40(1)
4.4 Specialization of Cerebral Hemispheres for Temporal and Spatial Factors of the Sound Field
41(2)
4.5 Model of Auditory-Brain System
43(2)
5 Temporal and Spatial Primary Percepts of the Sound and the Sound Field 45(18)
5.1 Temporal Percepts in Relation to the Temporal Factors of the Sound
45(9)
5.1.1 Pitches of Complex Tones
45(3)
5.1.2 Frequency Limits of the ACF Model
48(1)
5.1.3 Loudness of Sharply Filtered Noise
49(1)
5.1.4 Duration Sensation
50(2)
5.1.5 Timbre of an Electric Guitar Sound with Distortion
52(2)
5.1.6 Concluding Remarks
54(1)
5.2 Spatial Percepts in Relation to the Spatial Factors of the Sound Field
54(9)
5.2.1 Localization of a Sound Source in the Horizontal and Median Plane
55(1)
5.2.2 Apparent Source Width (ASW)
56(3)
5.2.3 Subjective Diffuseness
59(4)
6 Theory of Subjective Preference of the Sound Field 63(12)
6.1 Sound Fields with a Single Reflection and Multiple Reflections
63(3)
6.1.1 Preferred Delay Time of a Single Reflection
63(3)
6.1.2 Preferred Horizontal Direction of a Single Reflection to a Listener
66(1)
6.2 Sound Fields with Early Reflections and the Subsequent Reverberation
66(1)
6.3 Optimal Conditions Maximizing Subjective Preference
67(4)
6.3.1 Listening Level (LL)
68(1)
6.3.2 Early Reflections After the Direct Sound (Δt1)
69(1)
6.3.3 Subsequent Reverberation Time After the Early Reflections (Tsub)
70(1)
6.3.4 Magnitude of the Interaural Cross-Correlation Function (IACC)
70(1)
6.4 Theory of Subjective Preference for the Sound Field
71(4)
7 Examination of Subjective Preference Theory in an Existing Opera House 75(10)
7.1 Measurement of Orthogonal Factors of the Sound Field at Each Seat
75(2)
7.1.1 Procedure
75(1)
7.1.2 Measurement Results
76(1)
7.2 Subjective Preference Judgments
77(3)
7.2.1 Procedure
78(1)
7.2.2 Subjects
79(1)
7.2.3 Results of the Paired-Comparison Tests (PCT)
80(1)
7.3 Multiple Dimensional Analyses
80(5)
7.3.1 Correlation Matrix of Physical Factors
80(1)
7.3.2 Results and Discussion
81(4)
8 Reverberance of the Sound Field 85(12)
8.1 Reverberance in Relation to Four Orthogonal Factors
85(6)
8.1.1 Scale Value of Reverberance in Relation to Δt1 and Tsub
85(3)
8.1.2 Scale Value of Reverberance in Relation to SPL and IACC
88(3)
8.2 Examination on Reverberance in an Existing Hall
91(6)
9 Improvements in Subjective Preferences for Listeners and Performers 97(22)
9.1 Effects of Stage Building of Ancient Theaters
97(4)
9.1.1 Binaural Impulse Responses
97(1)
9.1.2 Reverberation
98(2)
9.1.3 IACC
100(1)
9.2 Balance of a Vocal Source on the Stage and Music in the Pit of Opera Houses
101(2)
9.2.1 Balance of Listening Level
101(1)
9.2.2 Balance of EDT, Δt1, and IACC
101(2)
9.3 Results
103(3)
9.4 Conclusions
106(1)
9.5 Singing Styles on the Stage Blending with the Sound Field for Listeners
106(6)
9.6 Preferred Delay Time of a Single Reflection, Δt1 for Cellists
112(7)
10 Optimizing Room-Forms 119(14)
10.1 Genetic Algorithm for Optimal Shape-Design
119(2)
10.2 A Simple Example of Designing a Shoebox-Type Room
121(1)
10.3 A Shape Improved from the Shoebox-Type Room
122(2)
10.3.1 A Shape Improved from the Shoebox-Type Room
122(1)
10.3.2 Actual Design of a Leaf-Shape Room
123(1)
10.4 Effects of Scattered Reflection of a Canopy Array
124(4)
10.4.1 Transfer Function for Panel Arrays
125(2)
10.4.2 Lateral Reflection Components from Overhead Canopies
127(1)
10.5 Acoustic Design Proposal for an Opera House
128(5)
10.5.1 Considerations Due to the Temporal Factor
129(1)
10.5.2 Considerations Due to the Spatial Factor
129(1)
10.5.3 Acoustic Design Proposal for an Opera House
130(3)
11 Visual Sensations on the Stage Blending with Opera and Music 133(20)
11.1 Visual Pitch Perception of Complex Signals
133(4)
11.2 Preferred Conditions of a Flickering Light
137(5)
11.3 Preferred Condition of Oscillatory Movements of a Circular Target
142(2)
11.4 Matching Movement of Camphor Leaves with Acoustic Tempo
144(6)
11.5 Subjective Preference of Texture
150(3)
12 Design Theory of Opera House Stage Persisting Individual Creations 153(8)
12.1 Design Theory of Opera House Stage
153(4)
12.2 Design Study of an Opera House
157(4)
12.2.1 Temporal Design
157(2)
12.2.2 Crystal Opera House
159(2)
Appendix: Comparison Between Measured Orthogonal Factors Using a Dummy Head and Four Human-Real Heads 161(6)
References 167(10)
Index 177