Atjaunināt sīkdatņu piekrišanu

E-grāmata: Operations Research: A Practical Introduction

(Stephen F. Austin State University, Nacogdoches, Texas, USA), (Old Dominion University, Norfolk, Virginia, USA), (University of Toronto, Ontario, Canada)
  • Formāts - EPUB+DRM
  • Cena: 55,09 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Operations Research: A Practical Introduction is just that: a hands-on approach to the field of operations research (OR) and a useful guide for using OR techniques in scientific decision making, design, analysis and management. The text accomplishes two goals. First, it provides readers with an introduction to standard mathematical models and algorithms. Second, it is a thorough examination of practical issues relevant to the development and use of computational methods for problem solving.

Highlights:











All chapters contain up-to-date topics and summaries





A succinct presentation to fit a one-term course





Each chapter has references, readings, and list of key terms





Includes illustrative and current applications





New exercises are added throughout the text





Software tools have been updated with the newest and most popular software

Many students of various disciplines such as mathematics, economics, industrial engineering and computer science often take one course in operations research. This book is written to provide a succinct and efficient introduction to the subject for these students, while offering a sound and fundamental preparation for more advanced courses in linear and nonlinear optimization, and many stochastic models and analyses.

It provides relevant analytical tools for this varied audience and will also serve professionals, corporate managers, and technical consultants.
Preface xiii
About the Authors xix
1 Introduction to Operations Research 1(22)
1.1 The Origins and Applications of Operations Research
1(2)
1.2 System Modeling Principles
3(2)
1.3 Algorithm Efficiency and Problem Complexity
5(4)
1.4 Optimality and Practicality
9(1)
1.5 Software for Operations Research
10(4)
1.6 Illustrative Applications
14(4)
1.6.1 Analytical Innovation in the Food and Agribusiness Industries
14(1)
1.6.2 Humanitarian Relief in Natural Disasters
15(2)
1.6.3 Mining and Social Conflicts
17(1)
1.7 Summary
18(1)
Key Terms
19(1)
References and Suggested Readings
20(3)
2 Linear Programming 23(66)
2.1 The Linear Programming Model
23(1)
2.2 The Art and Skill of Problem Formulation
24(6)
2.2.1 Integer and Nonlinear Models
30(1)
2.3 Graphical Solution of Linear Programming Problems
30(6)
2.3.1 General Definitions
30(1)
2.3.2 Graphical Solutions
31(2)
2.3.3 Multiple Optimal Solutions
33(1)
2.3.4 No Optimal Solution
34(1)
2.3.5 No Feasible Solution
35(1)
2.3.6 General Solution Method
36(1)
2.4 Preparation for the Simplex Method
36(3)
2.4.1 Standard Form of a Linear Programming Problem
36(2)
2.4.2 Solutions of Linear Systems
38(1)
2.5 The Simplex Method
39(7)
2.6 Initial Solutions for General Constraints
46(4)
2.6.1 Artificial Variables
46(2)
2.6.2 The Two Phase Method
48(2)
2.7 Information in the Tableau
50(6)
2.7.1 Multiple Optimal Solutions
51(1)
2.7.2 Unbounded Solution (No Optimal Solution)
51(2)
2.7.3 Degenerate Solutions
53(2)
2.7.4 Analyzing the Optimal Tableau: Shadow Prices
55(1)
2.8 Duality and Sensitivity Analysis
56(7)
2.8.1 The Dual Problem
56(4)
2.8.2 Postoptimality and Sensitivity Analysis
60(3)
2.9 Revised Simplex and Computational Efficiency
63(1)
2.10 Software for Linear Programming
64(7)
2.10.1 Extensions to General Simplex Methods
65(2)
2.10.2 Interior Methods
67(2)
2.10.3 Software for Solving Linear Programming
69(2)
2.11 Illustrative Applications
71(3)
2.11.1 Forest Pest Control Program
71(1)
2.11.2 Aircraft and Munitions Procurement
72(1)
2.11.3 Grape Processing: Materials Planning and Production
73(1)
2.12 Summary
74(1)
Key Terms
75(1)
Exercises
76(9)
References and Suggested Readings
85(4)
3 Network Analysis 89(68)
3.1 Graphs and Networks: Preliminary Definitions
90(2)
3.2 Maximum Flow in Networks
92(5)
3.2.1 Maximum Flow Algorithm
93(3)
3.2.2 Extensions to the Maximum Flow Problem
96(1)
3.3 Minimum Cost Network Flow Problems
97(19)
3.3.1 Transportation Problem
97(12)
3.3.1.1 Northwest Corner Rule
99(2)
3.3.1.2 Minimum Cost Method
101(1)
3.3.1.3 Minimum "Row" Cost Method
102(1)
3.3.1.4 Transportation Simplex Method
103(4)
3.3.1.5 Transportation Simplex
107(2)
3.3.2 Assignment Problem and Stable Matching
109(5)
3.3.2.1 Stable Matching
113(1)
3.3.3 Capacitated Transshipment Problem
114(2)
3.4 Network Connectivity
116(3)
3.4.1 Minimum Spanning Trees
116(2)
3.4.2 Shortest Network Problem: A Variation on Minimum Spanning Trees
118(1)
3.5 Shortest Path Problems
119(6)
3.5.1 Shortest Path through an Acyclic Network
120(1)
3.5.2 Shortest Paths from Source to All Other Nodes
121(2)
3.5.3 Problems Solvable with Shortest Path Methods
123(2)
3.6 Dynamic Programming
125(7)
3.6.1 Labeling Method for Multi-Stage Decision Making
126(1)
3.6.2 Tabular Method
127(3)
3.6.3 General Recursive Method
130(2)
3.7 Project Management
132(9)
3.7.1 Project Networks and Critical Paths
133(4)
3.7.2 Cost versus Time Trade-Offs
137(2)
3.7.3 Probabilistic Project Scheduling
139(2)
3.8 Software for Network Analysis
141(1)
3.9 Illustrative Applications
142(2)
3.9.1 DNA Sequence Comparison Using a Shortest Path Algorithm
142(1)
3.9.2 Multiprocessor Network Traffic Scheduling
142(1)
3.9.3 Shipping Cotton from Farms to Gins
143(1)
3.10 Summary
144(1)
Key Terms
145(1)
Exercises
146(8)
References and Suggested Readings
154(3)
4 Integer Programming 157(60)
4.1 Fundamental Concepts
157(2)
4.2 Typical Integer Programming Problems
159(2)
4.2.1 General Integer Problems
159(1)
4.2.2 Zero-One (0-1) Problems
159(1)
4.2.3 Mixed Integer Problems
160(1)
4.3 Zero-One (0-1) Model Formulations
161(4)
4.3.1 Traveling Salesman Model
161(1)
4.3.2 Knapsack Model
162(1)
4.3.3 Bin Packing Model
162(1)
4.3.4 Set Partitioning/Covering/Packing Models
163(1)
4.3.5 Generalized Assignment Model
164(1)
4.4 Branch-and-Bound
165(12)
4.4.1 A Simple Example
165(4)
4.4.2 A Basic Branch-and-Bound Algorithm
169(1)
4.4.3 Knapsack Example
169(2)
4.4.4 From Basic Method to Commercial Code
171(16)
4.4.4.1 Branching Strategies
172(2)
4.4.4.2 Bounding Strategies
174(1)
4.4.4.3 Separation Rules
175(1)
4.4.4.4 The Impact of Model Formulation
175(2)
4.4.4.5 Representation of Real Numbers
177(1)
4.5 Cutting Planes and Facets
177(3)
4.6 Cover Inequalities
180(7)
4.7 Lagrangian Relaxation
187(10)
4.7.1 Relaxing Integer Programming Constraints
187(1)
4.7.2 A Simple Example
188(3)
4.7.3 The Integrality Gap
191(1)
4.7.4 The Generalized Assignment Problem
192(2)
4.7.5 A Basic Lagrangian Relaxation Algorithm
194(1)
4.7.6 A Customer Allocation Problem
194(3)
4.8 Column Generation
197(4)
4.9 Software for Integer Programming
201(1)
4.10 Illustrative Applications
202(4)
4.10.1 Solid Waste Management
202(2)
4.10.2 Timber Harvest Planning
204(1)
4.10.3 Propane Bottling Plants
205(1)
4.11 Summary
206(1)
Key Terms
207(1)
Exercises
208(5)
References and Suggested Readings
213(4)
5 Nonlinear Optimization 217(32)
5.1 Preliminary Notation and Concepts
218(5)
5.2 Unconstrained Optimization
223(6)
5.2.1 One-Dimensional Search
223(2)
5.2.1.1 One-Dimensional Search Algorithm
223(2)
5.2.2 Multivariable Search: Gradient Method
225(3)
5.2.2.1 Multivariable Gradient Search
226(2)
5.2.3 Newton's Method
228(1)
5.2.4 Quasi-Newton Methods
229(1)
5.3 Constrained Optimization
229(7)
5.3.1 Lagrange Multipliers (Equality Constraints)
229(1)
5.3.2 Karush-Kuhn-Tucker Conditions (Inequality Constraints)
230(1)
5.3.3 Quadratic Programming
231(5)
5.3.4 More Advanced Methods
236(1)
5.4 Software for Nonlinear Optimization
236(3)
5.5 Illustrative Applications
239(3)
5.5.1 Gasoline Blending Systems
239(1)
5.5.2 Portfolio Construction
240(1)
5.5.3 Balancing Rotor Systems
241(1)
5.6 Summary
242(1)
Key Terms
242(1)
Exercises
243(2)
References and Suggested Readings
245(4)
6 Markov Processes 249(36)
6.1 State Transitions
250(6)
6.2 State Probabilities
256(3)
6.3 First Passage Probabilities
259(2)
6.4 Properties of the States in a Markov Process
261(2)
6.5 Steady-State Analysis
263(2)
6.6 Expected First Passage Times
265(2)
6.7 Absorbing Chains
267(4)
6.8 Software for Markov Processes
271(1)
6.9 Illustrative Applications
272(4)
6.9.1 Water Reservoir Operations
272(1)
6.9.2 Markov Analysis of Dynamic Memory Allocation
273(1)
6.9.3 Markov Models for Manufacturing Production Capability
274(1)
6.9.4 Markov Decision Processes in Dairy Farming
275(1)
6.10 Summary
276(1)
Key Terms
276(1)
Exercises
277(4)
References and Suggested Readings
281(4)
7 Queueing Models 285(26)
7.1 Basic Elements of Queueing Systems
285(3)
7.2 Arrival and Service Patterns
288(3)
7.2.1 The Exponential Distribution
288(2)
7.2.2 Birth-and-Death Processes
290(1)
7.3 Analysis of Simple Queueing Systems
291(8)
7.3.1 Notation and Definitions
291(1)
7.3.2 Steady State Performance Measures
292(6)
7.3.3 Practical Limits of Queueing Models
298(1)
7.4 Software for Queueing Models
299(1)
7.5 Illustrative Applications
300(5)
7.5.1 Cost Efficiency and Service Quality in Hospitals
300(2)
7.5.2 Queueing Models in Manufacturing
302(2)
7.5.3 Nurse Staffing Based on Queueing Models
304(1)
7.6 Summary
305(1)
Key Terms
306(1)
Exercises
306(3)
References and Suggested Readings
309(2)
8 Simulation 311(30)
8.1 Simulation: Purposes and Applications
311(3)
8.2 Discrete Simulation Models
314(7)
8.2.1 Event-Driven Models
314(3)
8.2.2 Generating Random Events
317(4)
8.3 Observations of Simulations
321(4)
8.3.1 Gathering Statistics
321(3)
8.3.1.1 Average Time in System
321(1)
8.3.1.2 Average Waiting Time
322(1)
8.3.1.3 Average Number in Queue
322(1)
8.3.1.4 Server Utilization
323(1)
8.3.2 Design of Simulation Experiments
324(1)
8.4 Software for Simulation
325(3)
8.5 Illustrative Applications
328(6)
8.5.1 Finnish Air Force Fleet Maintenance
328(1)
8.5.2 Simulation of a Semiconductor Manufacturing Line
329(2)
8.5.3 Simulation of Eurotunnel Terminals
331(1)
8.5.4 Simulation for NASA's Space Launch Vehicles Operations
332(2)
8.6 Summary
334(1)
Key Terms
334(1)
Exercises
335(2)
References and Suggested Readings
337(4)
9 Decision Analysis 341(54)
9.1 The Decision-Making Process
341(4)
9.2 An Introduction to Game Theory
345(5)
9.2.1 Maximin Strategy
345(1)
9.2.2 Maximax Strategy
346(1)
9.2.3 Laplace Principle (Principle of Insufficient Reason)
346(1)
9.2.4 Hurwicz Principle
346(1)
9.2.5 Savage Minimax Regret
347(3)
9.3 Decision Trees
350(8)
9.4 Utility Theory
358(12)
9.4.1 The Axioms of Utility Theory
359(2)
9.4.2 Utility Functions
361(5)
9.4.3 The Shape of the Utility Curve
366(4)
9.5 The Psychology of Decision-Making
370(8)
9.5.1 Misconceptions of Probability
370(2)
9.5.2 Availability
372(1)
9.5.3 Anchoring and Adjustment
372(1)
9.5.4 Dissonance Reduction
373(1)
9.5.5 The Framing Effect
374(2)
9.5.6 The Sunk Cost Fallacy
376(1)
9.5.7 Irrational Human Behavior
377(2)
9.5.7.1 What Can We Do about Irrational Behavior?
378(1)
9.6 Software for Decision Analysis
378(1)
9.7 Illustrative Applications
379(6)
9.7.1 Decision Support System for Minimizing Costs in the Maritime Industry
379(2)
9.7.2 Refinery Pricing under Uncertainty
381(2)
9.7.3 Decisions for Radioactive Waste Management
383(1)
9.7.4 Investment Decisions and Risk in Petroleum Exploration
383(2)
9.8 Summary
385(1)
Key Terms
385(2)
Exercises
387(5)
References and Suggested Readings
392(3)
10 Heuristic and Metaheuristic Techniques for Optimization 395(38)
10.1 Greedy Heuristics
397(1)
10.2 Local Improvement Heuristics
398(2)
10.3 Simulated Annealing
400(7)
10.4 Parallel Annealing
407(2)
10.5 Genetic Algorithms
409(5)
10.6 Tabu Search
414(3)
10.7 Constraint Programming and Local Search
417(1)
10.8 Other Metaheuristics
418(1)
10.9 Software for Metaheuristics
419(1)
10.10 Illustrative Applications
420(6)
10.10.1 FedEx Flight Management Using Simulated Annealing
420(2)
10.10.2 Ecosystem Management Using Genetic Algorithm Heuristics
422(2)
10.10.3 Efficient Routing and Delivery of Meals on Wheels
424(2)
10.11 Summary
426(1)
Key Terms
427(1)
Exercises
428(2)
References and Suggested Readings
430(3)
Appendix: Review of Essential Mathematics-Notation, Definitions, and Matrix Algebra 433(6)
Index 439
Michael Carter, Camille C. Price, Ghaith Rabadi