Atjaunināt sīkdatņu piekrišanu

Optical CDMA Networks: Principles, Analysis and Applications [Hardback]

(University of Birmingham), (University of Birmingham)
  • Formāts: Hardback, 432 pages, height x width x depth: 252x175x28 mm, weight: 875 g
  • Sērija : IEEE Press
  • Izdošanas datums: 30-Mar-2012
  • Izdevniecība: Wiley-IEEE Press
  • ISBN-10: 0470665173
  • ISBN-13: 9780470665176
  • Hardback
  • Cena: 140,48 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 432 pages, height x width x depth: 252x175x28 mm, weight: 875 g
  • Sērija : IEEE Press
  • Izdošanas datums: 30-Mar-2012
  • Izdevniecība: Wiley-IEEE Press
  • ISBN-10: 0470665173
  • ISBN-13: 9780470665176
This book focuses heavily on the principles, analysis and applications of code-division multiple-access (CDMA) techniques in optical communication systems and networks. In this book, the authors intimately discuss modern optical networks and their applications in current and emerging communication technologies, evaluating the quality, speed and number of supported services. In particular, principles and fundamentals of optical CDMA techniques from beginner to advanced levels are heavily covered. Furthermore, the authors concentrate on methods and techniques of various encoding and decoding schemes and their structures, as well as analysis of optical CDMA systems with various transceiver models including advanced multi-level incoherent and coherent modulations with the architecture of access/aggregation networks in mind. Moreover, authors examine intriguing topics of optical CDMA networking, compatibility with IP networks, and implementation of optical multi-rate multi-service CDMA networks.

Key features:





Expanded coverage of optical CDMA networks, starts from principles and fundamentals Comprehensive mathematical modelling and analysis from signal to system levels Addresses the applications of modern optical networking in the current and emerging communication technologies Greater focus on advanced optical multi-level incoherent and coherent modulations, spreading codes, and transceiver designs Detailed hardware specifications, system-level block diagrams, and network nodes functionalities

This book appeals to researchers, practicing engineers, and advanced students. It is a practical resource for readers with an interest in optical communications and networks.
List of Figures
xiii
List of Tables
xxv
Preface xxvii
Acknowledgements xxxiii
1 Introduction to Optical Communications
1(28)
1.1 Evolution of Lightwave Technology
1(2)
1.2 Laser Technologies
3(1)
1.3 Optical Fibre Communication Systems
4(3)
1.4 Lightwave Technology in Future
7(1)
1.5 Optical Lightwave Spectrum
7(2)
1.6 Optical Fibre Transmission
9(1)
1.7 Multiple Access Techniques
10(4)
1.7.1 Wavelength Division Multiple Access (WDMA)
10(2)
1.7.2 Time Division Multiple Access (TDMA)
12(1)
1.7.3 Code Division Multiple Access (CDMA)
13(1)
1.8 Spread Spectrum Communications Techniques
14(7)
1.8.1 Direct-Sequence Spread Spectrum (DS-SS)
15(2)
1.8.2 CDMA and DS-SS
17(1)
1.8.3 Frequency-Hopping Spread Spectrum (FH-SS)
18(2)
1.8.4 CDMA and FH-SS
20(1)
1.9 Motivations for Optical CDMA Communications
21(1)
1.10 Access Networks Challenges
22(1)
1.11 Summary
23(6)
References
24(5)
2 Optical Spreading Codes
29(86)
2.1 Introduction
29(1)
2.2 Bipolar Codes
30(7)
2.2.1 m-Sequence Codes
30(3)
2.2.2 Gold Sequences
33(1)
2.2.3 Walsh-Hadamard Codes
34(3)
2.3 Unipolar Codes: Optical Orthogonal Codes
37(4)
2.4 Unipolar Codes: Prime Code Families
41(21)
2.4.1 Prime Codes
41(3)
2.4.2 Modified Prime Codes (MPC)
44(3)
2.4.3 The New-Modified Prime Code (n-MPC)
47(3)
2.4.4 Padded Modified Prime Codes
50(3)
2.4.5 Group Padded Modified Prime Code (GPMPC)
53(2)
2.4.6 Transposed Modified Prime Codes
55(7)
2.5 Codes with Ideal In-Phase Cross-Correlation
62(14)
2.5.1 Finite Fields
63(2)
2.5.2 Balanced Incomplete Block Design Codes
65(2)
2.5.3 Modified Quadratic Congruence Codes
67(3)
2.5.4 Modified Frequency-Hopping Codes
70(2)
2.5.5 Codes Evaluation and Comparison
72(4)
2.6 Multidimensional Optical Codes
76(8)
2.6.1 Two-Dimensional Optical Spreading Codes
78(6)
2.7 Channel Encoding in OCDMA Systems
84(16)
2.7.1 Manchester Codes
84(2)
2.7.2 Convolutional Codes
86(5)
2.7.3 Turbo Codes
91(4)
2.7.4 Turbo Decoding Algorithms
95(5)
2.8 Turbo-Coded Optical CDMA
100(10)
2.8.1 Turbo-Coded Optical CDMA Transceivers
103(2)
2.8.2 Analysis of Uncoded OCDMA
105(1)
2.8.3 Analysis of Turbo-Coded OCDMA
106(4)
2.9 Summary
110(5)
References
111(4)
3 Optical CDMA Review
115(18)
3.1 Introduction
115(1)
3.2 Optical Coding Principles
115(2)
3.3 OCDMA Networking: Users Are Codes
117(2)
3.3.1 From LAN to PON
117(1)
3.3.2 OCDMA for Access Networks
118(1)
3.4 Optical CDMA Techniques
119(7)
3.4.1 Coherent vs. Incoherent OCDMA
120(1)
3.4.2 Synchronous vs. Asynchronous OCDMA
120(1)
3.4.3 Wavelength-Hopping Coding
121(1)
3.4.4 Spectral Phase Coding (SPC)
122(1)
3.4.5 Spectral-Amplitude-Coding (SAC)
123(2)
3.4.6 Time-Spreading Coding
125(1)
3.5 Free-Space and Atmospheric Optical CDMA
126(2)
3.6 Summary
128(5)
References
128(5)
4 Spectrally Encoded OCDMA Networks
133(38)
4.1 Introduction
133(1)
4.2 Spectral-Amplitude-Coding Schemes
134(7)
4.2.1 Arrayed Waveguide Gratings (AWGs)
134(1)
4.2.2 Acoustically Tuneable Optical Filters (ATOF)
135(2)
4.2.3 Fibre Bragg Gratings
137(4)
4.3 System Considerations
141(3)
4.3.1 Tuneable Range
141(1)
4.3.2 Bit Rate Limitation
141(1)
4.3.3 Low-Cost Structure by Using Couplers
141(2)
4.3.4 Noise Sources at the Receivers
143(1)
4.4 Gaussian Approach Analysis
144(9)
4.4.1 Optimal Threshold
144(1)
4.4.2 Signal-to-Noise Ratio and Bit-Error Rate
144(1)
4.4.3 Gaussian Performance Analysis
145(4)
4.4.4 Numerical Results
149(4)
4.5 Negative Binomial Approach Analysis
153(11)
4.5.1 NB Distribution with Hadamard Encoding
153(6)
4.5.2 NB Distribution with MQC Encoding
159(5)
4.6 Spectral-Phase-Coding Schemes
164(3)
4.7 Summary
167(4)
References
167(4)
5 Incoherent Temporal OCDMA Networks
171(42)
5.1 Introduction
171(1)
5.2 PPM-OCDMA Signalling
172(1)
5.3 PPM-OCDMA Transceiver Architecture
173(7)
5.3.1 PPM-OCDMA Transmitter Architectures
173(3)
5.3.2 PPM-OCDMA Receiver Architectures
176(4)
5.4 PPM-OCDMA Performance Analysis
180(3)
5.4.1 Analysis of Simple Receiver
180(1)
5.4.2 Analysis of Receiver with MAI Cancellation and Manchester Encoding
181(1)
5.4.3 Analysis of a Receiver with MAI Cancellation
182(1)
5.5 Discussion of Results
183(4)
5.5.1 BER Against Received Signal Power
183(1)
5.5.2 BER Against Number of Active Users
184(2)
5.5.3 BER Against Prime Number
186(1)
5.6 Overlapping PPM-OCDMA Signalling
187(1)
5.7 OPPM-OCDMA Transceiver Architecture
188(8)
5.7.1 OPPM-OCDMA Transmitter Architectures
188(4)
5.7.2 OPPM-OCDMA Receiver Architectures
192(4)
5.8 OPPM-OCDMA Performance Analysis
196(7)
5.8.1 Analysis of Simple Receiver
196(2)
5.8.2 Analysis of Receiver with MAI Cancellation
198(1)
5.8.3 Analysis of Receiver with MAI Cancellation and Manchester Encoding
198(1)
5.8.4 Analysis of Self-Interferences (SI)
199(4)
5.9 Discussion of Results
203(6)
5.9.1 BER Performance of Receivers with MAI
203(4)
5.9.2 BER Performance of Receivers with MAI and SI
207(2)
5.10 Analysis of Throughput
209(2)
5.10.1 OPPM-OCDMA Throughput
209(1)
5.10.2 PPM-OCDMA Throughput
210(1)
5.11 Summary
211(2)
References
211(2)
6 Coherent Temporal OCDMA Networks
213(18)
6.1 Introduction
213(1)
6.2 Coherent Homodyne BPSK-OCDMA Architecture
214(8)
6.2.1 Analysis of Phase Modulation with MZI
215(4)
6.2.2 Analysis of Phase Modulation with DFB Injection-Locking
219(3)
6.3 Coherent Heterodyne BPSK-OCDMA Architecture
222(7)
6.3.1 Analysis of Phase Modulation with MZI
225(4)
6.4 Summary
229(2)
References
230(1)
7 Hybrid Temporal Coherent and Incoherent OCDMA Networks
231(14)
7.1 Introduction
231(1)
7.2 Coherent Transmitter with Incoherent Receiver
232(3)
7.2.1 Interference Cancellation Technique
234(1)
7.3 Analysis of Transceivers with MAI Cancellation
235(4)
7.4 Results and Throughput Analysis
239(5)
7.5 Summary
244(1)
References
244(1)
8 Optical CDMA with Polarization Modulations
245(36)
8.1 Introduction
245(2)
8.2 Optical Polarization Shift Keying (PolSK)
247(7)
8.2.1 Theory of Polarization Modulation
247(2)
8.2.2 Laser Phase Noise
249(1)
8.2.3 Self-Phase Modulation
249(1)
8.2.4 Polarization Fluctuation
250(3)
8.2.5 Polarization Dependent Loss
253(1)
8.3 PolSK-OCDMA Transceiver Architecture
254(9)
8.3.1 Signals and System Configuration
254(2)
8.3.2 Decision Rule Analysis at PolSK-OCDMA Receiver
256(3)
8.3.3 PolSK-OCDMA Signal Processing
259(4)
8.4 Evaluation of PolSK-OCDMA Transceiver Performance
263(2)
8.5 Transceiver Architecture for Hybrid F-PolSK-OCDMA
265(8)
8.5.1 Transmitter Configuration
265(2)
8.5.2 Receiver Configuration and Signal Processing
267(2)
8.5.3 Analysis of Receivers Error Probability
269(4)
8.6 Performance of F-PolSK-OCDMA Transceiver
273(1)
8.7 Long-Haul PolSK Transmission
273(5)
8.7.1 Direct-Detection PolSK
275(1)
8.7.2 Noises in Polarization Modulated Systems
276(2)
8.8 Summary
278(3)
References
278(3)
9 Optical CDMA Networking
281(66)
9.1 Introduction
281(8)
9.1.1 Current Solutions
282(2)
9.1.2 Next Generation Networks (NGN)
284(5)
9.2 OCDMA-PON
289(1)
9.3 OCDMA-PON Architecture
290(9)
9.3.1 OCDMA-PON Transmission Analysis
293(3)
9.3.2 Performance Discussion of OCDMA-PON
296(3)
9.4 IP Traffic over OCDMA Networks
299(9)
9.4.1 IP Transmission over OCDMA Network
300(2)
9.4.2 Analysis of IP over OCDMA
302(2)
9.4.3 Performance of IP over OCDMA
304(4)
9.5 Random Access Protocols
308(22)
9.5.1 Random Access Protocol Algorithms
309(5)
9.5.2 Network Performance Metrics
314(9)
9.5.3 Performance of Prime Code Families in Random Access Protocols
323(7)
9.6 Multi-Protocol Label Switching
330(12)
9.6.1 MPLS Fundamentals
330(1)
9.6.2 Optical MPLS Techniques
331(10)
9.6.3 Generalized MPLS (GMPLS)
341(1)
9.7 Summary
342(5)
References
344(3)
10 Services Differentiation and Quality of Services in Optical CDMA Networks
347(40)
10.1 Introduction
347(4)
10.2 Differentiated Services in Optical CDMA
351(3)
10.3 Variable-Weight Optical Spreading Codes
354(10)
10.3.1 Distinct Set Approach
356(4)
10.3.2 Random Approach
360(2)
10.3.3 Performance Analysis
362(2)
10.4 Variable-Length Optical Spreading Codes
364(12)
10.4.1 Performance Analysis
372(4)
10.5 Multirate Differentiated Services in OCDMA Networks
376(7)
10.5.1 Performance Analysis
379(4)
10.6 Summary
383(4)
References
384(3)
Index 387
Dr. Hooshang Ghafouri-Shiraz, University of Birmingham, UK Hooshang Ghafouri-Shiraz received his B.Sc. and M.Sc. degrees in electronic and electrical engineering from Shiraz University, Shiraz, Iran, in 1973 and 1978, respectively, and the Doctor of Engineering (D.Eng.) degree from the University of Tokyo, Tokyo, Japan, in 1985. Ghafouri-Shiraz is a Reader in optical and microwave communications, Director of postgraduate research at University of Birmingham (Dept. of EECE). His research interests include optical CDMA, optical networks, optical devices, optical fibre communications, nonlinear optics, and microwave propagation. Dr. Massoud Karbassian, University of Birmingham, UK Massoud Karbassian received his Ph.D. degree in optical communications and networks from the University of Birmingham in 2009. He is a researcher in the Optical Devices and Communication Laboratory in the Department of Electronic, Electrical and Computer Engineering, where he has been working on optical CDMA transport networks since 2006. Dr. Karbassian has been recently working extensively on investigating IP-over-OCDMA communications for next generation access networks.