Atjaunināt sīkdatņu piekrišanu

E-grāmata: Optical Coherence Tomography in Glaucoma

  • Formāts: 212 pages
  • Izdošanas datums: 25-Sep-2021
  • Izdevniecība: Thieme Medical Publishers Inc
  • Valoda: eng
  • ISBN-13: 9781638537045
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 144,00 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 212 pages
  • Izdošanas datums: 25-Sep-2021
  • Izdevniecība: Thieme Medical Publishers Inc
  • Valoda: eng
  • ISBN-13: 9781638537045
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

A comprehensive and user-friendly guide on leveraging OCT for the management of glaucoma

Optical coherence tomography (OCT) is a noninvasive diagnostic imaging modality that enables ophthalmologists to visualize different layers of the optic nerve and retinal nerve fiber layer (RNFL) with astounding detail. Today, OCT is an instrumental tool for screening, diagnosing, and tracking the progression of glaucoma in patients. Optical Coherence Tomography in Glaucoma by renowned glaucoma specialist Jullia A. Rosdahl and esteemed contributors is a one-stop, unique resource that summarizes the clinical utility of this imaging technology, from basics to advanced analyses.

The book features 14 chapters, starting with introductory chapters that discuss development of OCT and its applications for visualizing the optic nerve and macula. In chapter 5, case studies illustrate OCT imaging of the optic nerve, RNFL, and macula in all stages of glaucoma, from patients at risk to those with mild, moderate, and severe diseases. The next chapters cover the intrinsic relationship between optic nerve structure and function, the use of structure–function maps, and examples of their relationship, followed by a comparison of commonly used devices and a chapter on artifacts. Anterior segment OCT is covered next, followed by chapters covering special considerations in pediatric glaucomas and in patients with high refractive errors. The final chapters cover innovations in OCT on the horizon including OCT angiography, swept-source OCT, and artificial intelligence.

Key Highlights

  • Illustrative case examples provide firsthand clinical insights on how OCT can be leveraged to inform glaucoma treatment.
  • In-depth guidance on recognizing and managing artifacts including case examples and key technical steps to help prevent their occurrence.
  • Pearls on the use of OCT for less common patient scenarios such as pediatric glaucomas and high refractive errors.
  • Future OCT directions including angiography, swept-source, and the use of artificial intelligence.

This practical resource is essential reading for ophthalmology trainees and ophthalmologists new to using OCT for glaucoma. The pearls, examples, and novel topics in this book will also help experienced clinicians deepen their knowledge and increase confidence using OCT in daily practice.

This book includes complimentary access to a digital copy on https://medone.thieme.com.

Preface xiii
Acknowledgments xiv
Contributors xv
1 Introduction: Practical Guide, OCT for Glaucoma
1(3)
Jullia A. Rosdahl
1.1 Introduction
1(1)
1.2 Overview of the Guide
1(1)
1.2.1 Development of OCT
1(1)
1.2.2 OCT of the Optic Nerve
1(1)
1.2.3 OCT of the Macula
1(1)
1.2.4 Illustrative Case Examples
1(1)
1.2.5 Structure-Function Relationship
1(1)
1.2.6 Comparison of Common Devices
2(1)
1.2.7 Artifacts and Masqueraders
2(1)
1.2.8 Anterior Segment OCT in Glaucoma
2(1)
1.2.9 Special Considerations: OCT in Childhood Glaucoma
2(1)
1.2.10 Special Considerations: High Refractive Errors
2(1)
1.2.11 Future Directions: OCT Angiography for Glaucoma
2(1)
1.2.12 Future Directions: Swept-Source OCT for Glaucoma
2(1)
1.2.13 Future Directions: Artificial Intelligence Applications
2(1)
1.3 How to Use the Guide
2(1)
1.4 Conclusion
3(1)
2 Development of Optical Coherence Tomography
4(12)
Joel S. Schuman
Rachel A. Downes
2.1 Introduction
4(1)
2.2 Setting the Stage: Lasers Meet Medicine
4(2)
2.2.1 Light in Flight
4(1)
2.2.2 Interferometry
5(1)
2.2.3 The Pivotal Role of Collaboration
6(1)
2.3 Optical Coherence Tomography: The Debut
6(3)
2.3.1 OCT versus Ultrasound
6(1)
2.3.2 How OCT Works
7(1)
2.3.3 The First OCT Images
8(1)
2.3.4 Providing Clinical Value
8(1)
2.4 Commercialization
9(1)
2.4.1 From the Bench to the Bedside: The Need for Speed
9(1)
2.4.2 The First Commercial OCT
9(1)
2.4.3 OCT Instrument Design
10(1)
2.5 The Fourier Switch
10(4)
2.5.1 Spectral Domain OCT
10(1)
2.5.2 Swept-Source OCT
11(3)
2.6 OCT-Angiography
14(1)
2.7 Impact
14(2)
2.7.1 Financial
14(1)
2.7.2 Scientific and Clinical
15(1)
3 Optical Coherence Tomography of the Optic Nerve
16(22)
Andrew Williams
Jullia A. Rosdahl
3.1 Introduction
16(5)
3.1.1 Glaucoma Imaging
16(1)
3.1.2 Optical Coherence Tomography
16(5)
3.2 OCT Output
21(8)
3.2.1 Overview
21(4)
3.2.2 OCT Interpretation
25(4)
3.3 Utility of OCT in Glaucoma Management
29(4)
3.3.1 Reproducibility
29(1)
3.3.2 Reliability
30(1)
3.3.3 Progression Analysis
30(3)
3.3.4 Diagnostic Accuracy
33(1)
3.3.5 Correlation with Patient-Centered Outcomes
33(1)
3.4 Limitations and Pitfalls
33(3)
3.4.1 Common Artifacts
33(1)
3.4.2 Pitfalls
34(1)
3.4.3 Green and Red Disease
34(1)
3.4.4 Limitations
34(2)
3.5 Future Directions
36(1)
3.6 Conclusions
36(2)
4 Optical Coherence Tomography of the Macula
38(13)
Divakar Gupta
4.1 Retinal Imaging for Glaucoma
38(2)
4.1.1 Glaucoma and Retinal Ganglion Cells
38(1)
4.1.2 RGCs and the Macula
39(1)
4.2 OCT Image of the Macula
40(2)
4.2.1 Devices and Segmentation
40(1)
4.2.2 Correlation between Visual Field and Macular OCT
41(1)
4.2.3 Complementing Peripapillary RNFL Scans with Macular OCT Scans
41(1)
4.2.4 Asymmetry Analysis
42(1)
4.3 Macular OCT and Glaucoma Management
42(4)
4.3.1 Diagnosis and Progression
42(1)
4.3.2 Barriers to Proper OCT Interpretation
43(1)
4.3.3 Practical Uses of Macular OCT
44(2)
4.4 Artifacts
46(3)
4.4.1 Vitreous Traction/Adherence
46(1)
4.4.2 Cystic Changes
47(1)
4.4.3 Epiretinal Membranes
47(1)
4.4.4 Retinal Atrophy
47(1)
4.4.5 Other Macular Pathologies
48(1)
4.4.6 Myopia
48(1)
4.4.7 Active Uveitis
49(1)
4.4.8 Acquisition Artifacts
49(1)
4.5 OCT Angiography
49(1)
4.6 Conclusions
49(2)
5 Illustrative Case Examples
51(22)
Jullia A. Rosdahl
Ahmad A. Aref
Lawrence S. Ceyman
Teresa C. Chen
Catherine M. Marando
Elli Park
Ki Ho Park
Yong Woo Kim
Hana L. Takusagawa
Atalie Carina Thompson
Andrew Williams
Ian Conner
5.1 Overview
51(1)
5.2 Early (Preperimetric) Glaucoma
51(1)
5.3 Mild-to-Moderate Glaucoma
51(7)
5.4 Severe Glaucoma
58(1)
5.4.1 Severe Stage Glaucoma, due to Significant Visual Field Constriction
58(1)
5.5 Glaucoma that Is Progressing
58(11)
5.6 Conclusions
69(4)
6 Structure-Function Relationship
73(12)
Felipe A. Medeiros
6.1 Introduction
73(1)
6.2 Mapping Structural to Functional Loss in Glaucoma
73(12)
6.2.1 Does OCT Damage Precede Visual Field Loss in Glaucoma?
75(5)
6.2.2 How Are Structural Changes Linked to Functional Changes in Glaucoma?
80(5)
7 Comparison of Common Devices
85(26)
Lawrence S. Ceyman
Ahmad A. Aref
7.1 Retinal Nerve Fiber Layer Thickness
85(13)
7.1.1 Cirrus 6000 (Carl Zeiss Meditec AG, Jena, Germany)
85(6)
7.1.2 Spectralis (Heidelberg Engineering GmbH, Heidelberg, Germany)
91(3)
7.1.3 Avanti RTVue XR (Optovue, Inc., Fremont, CA, USA)
94(1)
7.1.4 3D OCT (Topcon Corporation, Tokyo, Japan)
95(3)
7.2 Optic Nerve Head
98(3)
7.2.1 Cirrus 6000 (Carl Zeiss Meditec AG, Jena, Germany)
98(1)
7.2.2 Spectralis (Heidelberg Engineering, Inc., Heidelberg, Germany)
99(1)
7.2.3 Avanti RTVue XR (Optovue, Inc., Fremont, CA, USA)
100(1)
7.2.4 3D OCT (Topcon Corporation, Tokyo, Japan)
100(1)
7.3 Macula
101(5)
7.3.1 Cirrus 6000 (Carl Zeiss Meditec AG, Jena, Germany)
101(2)
7.3.2 Spectralis (Heidelberg Engineering, Inc., Heidelberg, Germany)
103(2)
7.3.3 Avanti RTVue XR (Optovue, Inc., Fremont, CA, USA)
105(1)
7.3.4 3D OCT (Topcon Corporation, Tokyo, Japan)
106(1)
7.4 Progression Analysis
106(5)
7.4.1 Cirrus 6000 (Carl Zeiss Meditec AG, Jena, Germany)
106(1)
7.4.2 Spectralis (Heidelberg Engineering, Inc., Heidelberg, Germany)
107(1)
7.4.3 Avanti RTVue XR (Optovue, Inc., Fremont, CA, USA)
107(2)
7.4.4 3D-OCT (Topcon Corporation, Tokyo, Japan)
109(2)
8 Artifacts and Masqueraders
111(21)
Teresa C. Chen
Catherine M. Marando
Elli Park
8.1 Incidence of Artifacts in OCT Imaging
111(1)
8.2 Etiologies of Peripapillary RNFL OCT Artifacts
111(11)
8.2.1 Artifacts from Errors in Scan Acquisition
111(5)
8.2.2 Artifacts in Boundary Segmentation
116(3)
8.2.3 Artifacts due to Ocular Pathology Unrelated to Glaucoma
119(3)
8.2.4 Artifacts due to Differences in OCT Machines
122(1)
8.3 Etiologies of ONH and Macula Artifacts
122(3)
8.3.1 Bruch's Membrane Opening-Minimum Rim Width Artifacts
123(1)
8.3.2 Macular Asymmetry Analysis Artifacts
123(2)
8.4 OCT Diseases
125(4)
8.4.1 Red Disease
126(3)
8.4.2 Green Disease
129(1)
8.5 A Relevant Summary of OCT Artifacts for Technicians
129(1)
8.6 Future Directions
130(2)
8.6.1 Three-Dimensional Parameters
130(1)
8.6.2 OCT Angiography
130(2)
9 Anterior Segment Optical Coherence Tomography in Glaucoma
132(9)
Ying Han
Julius Oatts
9.1 Introduction to Anterior-Segment OCT
132(1)
9.2 Different AS-OCT Modalities and Systems
132(1)
9.3 AS-OCT Identification of Anterior Segment Structures and Parameters
133(1)
9.4 AS-OCT in Different Glaucomatous Conditions
134(4)
9.4.1 Primary Angle Closure Suspect (PACS)
134(1)
9.4.2 Primary Angle Closure Glaucoma (PACG)
134(1)
9.4.3 AS-OCT Following Laser Peripheral Iridotomy (LPI)
135(2)
9.4.4 AS-OCT Following Dilation
137(1)
9.4.5 AS-OCT Following Lens Extraction
137(1)
9.4.6 Other Glaucomatous Conditions
138(1)
9.5 AS-OCT in Postoperative Care
138(1)
9.6 AS-OCT in Additional Glaucoma-Related Situations
138(1)
9.7 Conclusions
139(2)
10 Special Considerations: OCT in Childhood Glaucoma
141(11)
Tanya S. Closer
Michael P. Kelly
Mays A. El-Dairi
Sharon F. Freedman
10.1 Introduction
141(1)
10.2 Handheld and Portable OCT Imaging Modalities
141(1)
10.3 Image Acquisition
142(1)
10.3.1 How OCT Can be Used during Examination Under Anesthesia
142(1)
10.3.2 Tabletop OCT for Children
142(1)
10.3.3 Structural Considerations for Image Acquisition
143(1)
10.4 Interpreting OCT Images in Pediatric Glaucoma
143(6)
10.4.1 Optical and Anatomic Considerations for Image Acquisition and Interpretation
143(2)
10.4.2 Comparing to a Normative Database
145(1)
10.4.3 OCT Changes in Childhood Glaucoma
145(3)
10.4.4 Postoperative Changes in OCT
148(1)
10.5 Pitfalls and Masqueraders of Pediatric Glaucoma
149(1)
10.6 Imaging Guidelines and Recommended Frequency of Imaging
150(2)
11 Special Considerations: High Refractive Errors
152(13)
Ki Ho Park
Yong Woo Kim
11.1 Introduction
152(1)
11.2 Technical Issues of OCT that Need to be Considered in High Myopia
152(7)
11.2.1 Scan-Circle Size: Ocular Magnification Error
152(1)
11.2.2 Scan-Circle Size: Pathologies Influencing the Scan Circle
153(1)
11.2.3 Scan-Circle Location: Effect of Major Vessels in Tilted Discs
154(1)
11.2.4 Normative Database
154(3)
11.2.5 Segmentation Errors
157(2)
11.3 Glaucoma Diagnosis in High Myopia
159(6)
11.3.1 Macular Parameters for Glaucoma Diagnosis
159(1)
11.3.2 Neuroretinal Rim Parameters for Glaucoma Diagnosis
159(2)
11.3.3 All at One Glance: 3D Wide-Field MapinSS-OCT
161(4)
12 Future Directions: Optical Coherence Tomography Angiography for Glaucoma
165(11)
Darrell WuDunn
12.1 Introduction
165(3)
12.1.1 The Role of Ocular Blood Flow in Glaucoma
165(1)
12.1.2 Optical Coherence Tomography Angiography Technology
165(3)
12.2 OCT A of the Optic Nerve Head and Peripapillary Microvasculature
168(1)
12.2.1 OCTA of the Optic Nerve Head Microvasculature in Normal Eyes
168(1)
12.2.2 OCTA of the Optic Nerve and Peripapillary Microvasculature in Glaucoma
169(1)
12.3 OCTA of the Macular Microvasculature
169(4)
12.3.1 OCTA of the Normal Macular Microvasculature
169(3)
12.3.2 OCTA of Macular Microvasculature in Glaucoma
172(1)
12.4 OCTA of the Choroid
173(1)
12.4.1 OCTA of the Normal Choroid
173(1)
12.4.2 OCTA of the Choroid in Glaucoma
174(1)
12.5 OCTA in the Future
174(2)
13 Future Directions: Swept-Source OCT for Glaucoma
176(7)
Hana L. Takusagawa
Elizabeth Ann Zone Cretara
13.1 Introduction
176(1)
13.2 Imaging of Intraocular Structures Using SS-OCT in Glaucoma
176(5)
13.2.1 Anterior Segment Application of SS-OCT in Glaucoma
177(1)
13.2.2 Analysis of Macular and Peripapillary Retina by SS-OCT
178(1)
13.2.3 Choroidal Application of SS-OCT in Glaucoma
179(1)
13.2.4 Optic Nerve Head Application of SS-OCT in Glaucoma
180(1)
13.2.5 Lamina Cribrosa Application of SS-OCT in Glaucoma
180(1)
13.3 Future Research in SS-OCT for Evaluation of Glaucoma
181(1)
13.4 Conclusions
181(2)
14 Future Directions: Artificial Intelligence Applications
183(8)
Atalie Carina Thompson
14.1 Introduction
183(1)
14.2 Artificial Intelligence
184(7)
14.2.1 Development of a Deep Learning Algorithm
184(1)
14.2.2 Deep Learning Algorithms to Diagnose Glaucoma on SD-OCT
185(2)
14.2.3 Deep Learning Algorithms Trained to Assess Color Fundus Photos Using SD-OCT
187(1)
14.2.4 Limitations
188(1)
14.2.5 Future Directions
189(2)
Index 191