Atjaunināt sīkdatņu piekrišanu

E-grāmata: Optical Fiber Sensing Technologies: Principles, Techniques and Applications

(Tianjin University, China), (Tianjin University, China), (Tianjin University, China), (Tianjin University, China)
  • Formāts: EPUB+DRM
  • Izdošanas datums: 26-Oct-2021
  • Izdevniecība: Blackwell Verlag GmbH
  • Valoda: eng
  • ISBN-13: 9783527822447
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 321,16 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: EPUB+DRM
  • Izdošanas datums: 26-Oct-2021
  • Izdevniecība: Blackwell Verlag GmbH
  • Valoda: eng
  • ISBN-13: 9783527822447
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Optical Fiber Sensing Technologies Explore foundational and advanced topics in optical fiber sensing technologies

In Optical Fiber Sensing Technologies: Principles, Techniques, and Applications, a team of distinguished researchers delivers a comprehensive overview of all critical aspects of optical fiber sensing devices, systems, and technologies. The book moves from the basic principles of the technology to innovation methods and a broad range of applications, including Bragg grating sensing technology, intra-cavity laser gas sensing technology, optical coherence tomography, distributed vibration sensing, and acoustic sensing.

The accomplished authors bridge the gap between innovative new research in the field and practical engineering solutions, offering readers an unmatched source of practical, application-ready knowledge.

Ideal for anyone seeking to further the boundaries of the science of optical fiber sensing or the technological applications for which these techniques are used, Optical Fiber Sensing Technologies: Principles, Techniques, and Applications also includes:





Thorough introductions to optical fiber and optical devices, as well as optical fiber Bragg grating sensing technology Practical discussions of Extrinsic-Fabry-Perot-Interferometer-based optical fiber sensing technology, acoustic sensing technology, and high-temperature sensing technology Comprehensive explorations of assemble free micro-interferometer-based optical fiber sensing technology In-depth examinations of optical fiber intra-cavity laser gas sensing technology

Perfect for applied and semiconductor physicists, Optical Fiber Sensing Technologies: Principles, Techniques, and Applications is also an invaluable resource for professionals working in the semiconductor, optical, and sensor industries, as well as materials scientists and engineers for measurement and control.
Volume 1
Preface xiii
1 Optical Fiber and Optical Devices
1(30)
1.1 Optical Fiber
1(2)
1.2 Light Source
3(6)
1.2.1 Semiconductor Laser
3(3)
1.2.2 Optical Fiber Laser
6(3)
1.3 Optical Amplifier
9(5)
1.3.1 Erbium-Doped Fiber Amplifier
9(3)
1.3.2 Semiconductor Optical Amplifier
12(2)
1.4 Detector
14(3)
1.5 Optical Fiber Passive Device
17(9)
1.5.1 Optical Fiber Coupler
17(1)
1.5.2 Optical Fiber Polarizer
18(1)
1.5.3 Optical Fiber Isolator
19(1)
1.5.4 Optical Fiber Circulator
20(2)
1.5.5 Optical Fiber Switcher
22(1)
1.5.5.1 Mechanical Optical Fiber Switcher
23(1)
1.5.5.2 Solid Physical Effect-Based Optical Fiber Switcher
24(2)
1.6 Optical Fiber Modulator
26(5)
1.6.1 Optical Fiber Phase Modulator
26(1)
1.6.2 Optical Fiber Intensity Modulator
27(1)
References
28(3)
Part I Discrete Optical Fiber Sensing
31(352)
2 Optical Fiber Bragg Grating Sensing Technology
33(60)
2.1 Principle of Fiber Bragg Grating Sensing
33(1)
2.2 Photosensitivity of Ge-Doped Fiber
34(3)
2.3 Fabrication of Fiber Bragg Grating
37(3)
2.4 Package Design for Strain and Temperature Sensing
40(15)
2.4.1 Package Design for Temperature Sensing
41(3)
2.4.2 Package Design for Strain Sensing
44(3)
2.4.3 Performance Evaluation Under Cryogenic Temperature
47(8)
2.5 Demodulation of Fiber Bragg Grating Sensing for Space Application
55(38)
2.5.1 Demodulation Theory of Fiber Bragg Grating Sensing
55(8)
2.5.2 Demodulation Instrument Development
63(1)
2.5.3 Effect of Environment Temperature Variation
64(16)
2.5.4 Performance of FBG in Space Vacuum Thermal Environment
80(4)
2.5.5 Cryogenic Static Measurement
84(6)
References
90(3)
3 Extrinsic Fabry-Perot Interferometer-Based Optical Fiber Sensing Technology
93(44)
3.1 Principle of Fabry-P6rot Interferometer
93(2)
3.2 Fabry-Perot Interferometer-Based Optical Fiber Sensor Structure
95(9)
3.2.1 Fiber-Optic Intrinsic Fabry-Perot Interferometer
95(1)
3.2.1.1 IFPI Based on Reflective Film Coating on Fiber End
96(1)
3.2.1.2 IFPI Based on UV-Induced Refractive Index Change
96(1)
3.2.1.3 IFPI Based on Fusion Splicing of Different Kinds of Fibers
97(1)
3.2.2 Fiber-Optic Extrinsic Fabry-P6rot Interferometer
98(1)
3.2.2.1 EFPI Based on Capillary and Two Optical Fibers
99(1)
3.2.2.2 EFPI Based on Diaphragm
100(1)
3.2.2.3 EFPI Based on Air Gap in Fiber
101(1)
3.2.2.4 EFPI Sensors Based on Angle-Polished Fiber End
102(1)
3.2.2.5 EFPI Based on Transparent Medium
103(1)
3.2.2.6 EFPI Based on In-Line Fiber Splicing
103(1)
3.3 Optical Fiber Fabry-P6rot Interferometer Sensor Based on MEMS
104(10)
3.3.1 Silicon-Diaphragm Optical Fiber Pressure Sensor
105(2)
3.3.2 Temperature-Compensated Silicon-Based Optical Fiber Pressure Sensor
107(3)
3.3.3 Non-intrusive Optical Fiber Sensor Head Chip Inspection
110(1)
3.3.3.1 Self-Referenced Residual Pressure Measurement Method
111(1)
3.3.3.2 Residual Pressure Self-Measurement Method
112(2)
3.4 Polarization Low-Coherence Interference Demodulation for Pressure Sensing
114(15)
3.4.1 Demodulation Theory
114(3)
3.4.2 Demodulation Instrument
117(1)
3.4.3 Demodulation Algorithm
118(6)
3.4.4 Low-Coherence Interference Multiplexing
124(5)
3.5 Application
129(8)
3.5.1 Optical Fiber Pressure Sensing in Ocean Application
129(1)
3.5.2 Optical Fiber Pressure Sensing in Aviation Application
129(3)
References
132(5)
4 Extrinsic Fabry-Perot Interferometer-Based Optical Fiber Acoustic Sensing Technology
137(32)
4.1 Polymer Diaphragm Optical Fiber Acoustic Sensor
137(1)
4.1.1 Basic Description of Fiber-Optic Fabry-Perot Acoustic Sensor
137(1)
4.1.2 The Diaphragm Used for Optical Fiber Acoustic Sensing
137(1)
4.2 Sensor Design and Parameters Optimization
138(3)
4.2.1 Structure of Fiber-Optic Fabry-Perot Acoustic Vibration Sensor
138(2)
4.2.2 Parameter Optimization of Sensor
140(1)
4.3 Demodulation
141(18)
4.3.1 Quadrature Phase Demodulation Theory
142(1)
4.3.1.1 Principle of Dual-Laser Quadrature Phase Demodulation
143(2)
4.3.1.2 Principle of Phase-Shifting Demodulation Using Birefringence Crystals
145(8)
4.3.2 Dual-Laser Quadrature Phase Demodulation Instrument
153(2)
4.3.3 Phase-Shifting Demodulation Instrument Using Birefringence Crystals
155(4)
4.4 Optical Fiber Acoustic Sensing in Space Application
159(10)
4.4.1 The Significance of Applying Optical Fiber Acoustic Sensor to Aerospace
159(1)
4.4.2 Application of Optical Fiber Acoustic Vibration Sensor in Monitoring Requirement of Water Sublimator
160(3)
4.4.3 Application of Optical Fiber Acoustic Sensor System in Low-Pressure Carbon Dioxide Environment
163(4)
References
167(2)
5 Extrinsic Fabry-Perot Interferometer-Based Optical Fiber High-Temperature Sensing Technology
169(38)
5.1 Sapphire Material Characteristic
169(4)
5.1.1 Optical Properties of Sapphire Crystal
169(2)
5.1.2 Temperature Characteristics of Sapphire Crystal
171(1)
5.1.2.1 Sapphire Fiber
171(1)
5.1.3 Sapphire Wafer
172(1)
5.2 Sapphire Fiber Fabry-Perot High-Temperature Sensor Design and Fabrication
173(8)
5.2.1 Theory of Fiber Fabry-Perot High-Temperature Sensing
173(1)
5.2.2 Fiber Coupling Model of Fabry-Perot Interference Signal
174(2)
5.2.3 Temperature Characteristics of Sapphire Fabry-Perot Cavity
176(1)
5.2.4 Sapphire Fiber and Multimode Fiber Beam Coupling Process
177(3)
5.2.5 Sapphire Fiber Fabry-Perot High-Temperature Sensor Packaging Process
180(1)
5.3 Sapphire Fiber Fabry-Perot High-Temperature Sensing Demodulation System
181(11)
5.3.1 Sensing Demodulation System
181(1)
5.3.2 Interference Spectrum Signal Characteristics of Sensing System
182(3)
5.3.3 Influence of Spectral Distribution of Light Source on Peak Position of Interference Spectrum Signal
185(2)
5.3.4 Typical Spectral Demodulation Principle
187(1)
5.3.4.1 Single-Peak Demodulation
187(2)
5.3.4.2 Dual-Peak Demodulation
189(1)
5.3.4.3 Fourier Transform Demodulation
189(2)
5.3.5 Demodulation Algorithm Based on Interferometric Spectral Phase Analysis
191(1)
5.4 Analysis of Sensing Performance of Sapphire Fiber Fabry-Perot High-Temperature Sensor
192(5)
5.4.1 Sensor Response Speed
193(1)
5.4.2 Different Signal-to-Noise Ratios and Fabry-Perot Cavity Lengths
193(4)
5.5 Self-Filtering High Fringe Contrast Sapphire Fiber Fabry-Perot High-Temperature Sensor
197(5)
5.6 Summary
202(5)
References
203(4)
6 Assembly-Free Micro-interferometer-Based Optical Fiber Sensing Technology
207(26)
6.1 Assembly-Free In-Fiber Micro-interferometer
207(1)
6.2 Optical Fiber Sensor Based on Fiber Tip Micro-Michelson Interferometer
208(4)
6.2.1 Principle of Optical Fiber Michelson Interferometer
208(1)
6.2.2 Structure of Micro-Michelson Interferometer on a Fiber Tip
209(2)
6.2.3 High-Temperature Sensing
211(1)
6.3 Optical Fiber Sensor Based on In-Line Mach-Zehnder Interferometer
212(6)
6.3.1 Principle of Optical Fiber Mach-Zehnder Interferometer
212(1)
6.3.2 Structure of In-Line Mach-Zehnder Interferometer
213(2)
6.3.3 In-Line Mach-Zehnder Interferometer Sensor
215(1)
6.3.3.1 High-Temperature Sensor
216(1)
6.3.3.2 Refractive Index Sensor
216(1)
6.3.3.3 Strain Sensor
217(1)
6.4 Optical Fiber Sensor Based on Fabry-Perot Interferometer
218(8)
6.4.1 Principle of Optical Fiber Fabry-Perot Interferometer
218(1)
6.4.1.1 Principle of Multiple-Beams Interference
218(2)
6.4.1.2 Principle of Multiple-Cavity Interference
220(1)
6.4.2 Structure of Fiber Fabry-Perot Interferometer
221(2)
6.4.3 Fiber Fabry-Perot Interferometer Sensor
223(1)
6.4.3.1 Refractive Index Sensor
223(1)
6.4.3.2 Pressure and Strain Sensor
224(1)
6.4.3.3 High-Temperature Sensor
224(1)
6.4.3.4 Multiple-Parameter Sensor
225(1)
6.5 Discussion and Conclusion
226(7)
References
226(7)
7 Surface Plasmon Resonance-Based Optical Fiber Sensing Technology
233(26)
7.1 Coating of Optical Fiber
233(5)
7.1.1 Physical Vapor Deposition
234(1)
7.1.1.1 Sputter Deposition
234(1)
7.1.1.2 Evaporation
234(1)
7.1.1.3 The Holding Mechanism of the Optical Fiber in PVD
235(2)
7.1.2 Chemical Liquid Phase Deposition
237(1)
7.1.3 Metal Nanoparticles and Nanowires
238(1)
7.2 Theoretical Modeling Multimode Optical Fiber Sensor Based on SPR
238(12)
7.2.1 The Model
239(8)
7.2.2 Experimental Verification
247(3)
7.3 EMD-Based Filtering Algorithm
250(9)
References
256(3)
8 Sagnac Interferometer-Based Optical Fiber Sensing Technology
259(44)
8.1 Principle of Sagnac Interferometer
259(1)
8.2 Optical Fiber Gyroscope (FOG)
260(4)
8.3 Optical Fiber Coil Quality Inspection Method
264(27)
8.3.1 Optical Fiber Coil and Its Winding Method
264(3)
8.3.2 Polarization Crosstalk Measurement of Fiber Coils
267(1)
8.3.2.1 The Principle of Polarization Crosstalk of PMF
268(1)
8.3.2.2 The Principle of Distributed Polarization Crosstalk Measurements and Controls
269(2)
8.3.2.3 PMF Coils Polarization Crosstalk Measurements and Controls
271(1)
8.3.2.4 Raw PMFs Quality Testing
271(1)
8.3.2.5 Online PMF Coils Polarization Crosstalk Measurements and Controls
272(1)
8.3.2.6 Online Controls for Winding Tensions
273(1)
8.3.2.7 Online Testing for Winding Symmetry
273(2)
8.3.2.8 Overall PMF Coils' Inspection
275(1)
8.3.2.9 PMF Coils' Technique Inspection
275(1)
8.3.3 Transient Characteristics Measurement of Fiber Coils
276(1)
8.3.3.1 Pointing Error Caused by Time-Dependent Radial Thermal Gradient
277(4)
8.3.3.2 Experimental Result and Discussions of Transient Characteristics Measurement of Fiber Coils
281(5)
8.3.4 Tomographic Inspection of Fiber Coils
286(1)
8.3.4.1 Principle of Tomographic Inspection of Fiber Coils
287(4)
8.4 Optical Fiber Current Sensing
291(12)
References
294(9)
9 Optical Fiber Sensors Based on the SMS Structure
303(42)
9.1 Theory of SMS Fiber Structure
303(4)
9.2 Characteristics of SMS Fiber Structure
307(12)
9.2.1 Influence of the MMF Length
307(4)
9.2.2 Influence of the Wavelength
311(1)
9.2.3 Influence of Core Radius of the MMF
311(2)
9.2.4 Influence of Refractive Indices of the MMF
313(6)
9.3 Fiber Sensors Based on SMS Fiber Structure
319(12)
9.3.1 Sensor Design and Fabrication
319(1)
9.3.2 Refractive Index Sensors Based on SNS Fiber Structure
320(10)
9.3.3 Temperature Sensors Based on SNS Structure
330(1)
9.3 A Magnetic Field Sensors Based on SNS or SMS Fiber Structure
331(14)
9.3.4.1 Scalar Magnetic Field
331(6)
9.3.4.2 Vector Magnetic Field
337(4)
References
341(4)
10 Whisper-Gallery-Mode-Based Hollow Microcavity Optical Fiber Sensing Technology
345(38)
10.1 Whisper-Gallery-Mode Theory
345(4)
10.2 Fabrication of Hollow Microcavity with Internal Air Pressure Control
349(10)
10.2.1 Drawing System
350(1)
10.2.2 Fabrication of Thin-Wall Micro-Capillary with Predetermined Radius
351(4)
10.2.3 Fabrication of Hollow Microsphere with Wall-Thickness Control
355(4)
10.3 Optical Fiber Magnetic Field Sensor Based on Thin-Wall Micro-Capillary and WGM
359(9)
10.3.1 Magnetic Nanoparticle Assembly
359(3)
10.3.2 Sensor Fabrication and Measurement
362(6)
10.4 Optical Fiber High-Resolution Temperature Sensor Based on Hollow Microsphere and WGM
368(7)
10.5 Ultraprecise Resonance Wavelength Determination Method
375(8)
References
380(3)
Volume 2
Preface xiii
Part II Special Discrete Optical Fiber Sensing and Network
383(154)
11 Optical Fiber Intra-cavity Laser Gas Sensing Technology
385(52)
11.1 Theory of Optical Fiber Intra-cavity Laser Gas Sensing
385(16)
11.1.1 Principle of Optical Fiber Laser
386(1)
11.1.1.1 Erbium-Doped Fiber Level Structure
386(3)
11.1.1.2 Analysis of Laser Output Characteristics
389(3)
11.1.2 Sensitivity Enhancement of Gas Sensing by Direct Absorption
392(1)
11.1.2.1 Basic Principle
392(1)
11.1.2.2 Sensitivity Enhancement Method
393(2)
11.1.3 Optical Fiber Intra-cavity Laser Gas Sensing by Wavelength Modulation
395(1)
11.1.3.1 Principle of Wavelength Modulation
395(2)
11.1.3.2 Software Phase-Locked Method
397(1)
11.1.4 Effect of Temperature on Performance of Gas Sensing
398(1)
11.1.4.1 Influence Mechanism
398(2)
11.1.4.2 Compensated Method
400(1)
11.2 Optical Fiber Intra-cavity Laser Gas Sensing System Design
401(9)
11.2.1 Overall Design
402(1)
11.2.2 Light Source Module
403(1)
11.2.2.1 ED FA
404(1)
11.2.2.2 F-P Filter
404(3)
11.2.3 Sensing Module
407(1)
11.2.4 Wavelength Reference Module
408(2)
11.2.5 Drive Detection Module
410(1)
11.3 Spectrum Signal Process
410(16)
11.3.1 Denoise with EMD
410(1)
11.3.1.1 Principle of EMD Denoising
411(1)
11.3.1.2 Performance of EMD Denoising
412(2)
11.3.2 Baseline Extraction
414(1)
11.3.2.1 Identification of Spectral Line Position
415(1)
11.3.2.2 Spectrum Baseline Removal
416(1)
11.3.2.3 Spectral Linetype Fitting
417(1)
11.3.3 Spectrum Separation
418(1)
11.3.3.1 Principle of Spectrum Separation
418(1)
11.3.3.2 Simulation Research on Spectrum Separation
419(1)
11.3.4 Concentration Demodulation
420(1)
11.3.4.1 Direct Absorption Method
421(2)
11.3.4.2 Wavelength Modulation Method
423(3)
11.4 Wavelength Calibration Analysis and Gas Recognition
426(11)
11.4.1 Wavelength Calibration Analysis
427(1)
11.4.1.1 F-P Etalon
428(3)
11.4.2 Gas Recognition
431(1)
11.4.2.1 Research on Positioning Methods
431(1)
11.4.2.2 Positioning Performance Test
432(1)
References
433(4)
12 Optical Fiber-Based Optical Coherence Tomography
437(50)
12.1 Optical Fiber Coherence Tomography Theory
437(10)
12.1.1 Time-Domain Optical Fiber-Based Optical Coherence Tomography
437(4)
12.1.2 Frequency-Domain Optical Fiber-Based Optical Coherence Tomography
441(3)
12.1.3 Axial Spatial Resolution of OCT
444(1)
12.1.4 Imaging Depth of OCT
445(1)
12.1.5 Sensitivity, SNR, and Imaging Speed of OCT
446(1)
12.2 Functional Optical Fiber-Based Optical Coherence Tomography
447(18)
12.2.1 Doppler Optical Coherence Tomography
447(1)
12.2.1.1 Doppler Optical Coherence Tomography Based on Phase-Resolved Doppler Method
448(1)
12.2.1.2 Doppler Optical Coherence Tomography Based on Doppler Variance (DV) Method
448(1)
12.2.1.3 Doppler Optical Coherence Tomography Based on Intensity-Based DV Method
449(1)
12.2.2 Polarization-Sensitive Optical Coherence Tomography
449(3)
12.2.2.1 Principle of PS-OCT with Single Input Polarization State
452(7)
12.2.2.2 PS-OCT System with Two Different Input Polarization States
459(6)
12.3 Biomedical Applications
465(11)
12.3.1 Dentistry
465(2)
12.3.2 Cardiovasology
467(5)
12.3.3 Neurology
472(4)
12.4 The Detailed Matrix Elements of Mout
476(11)
References
478(9)
13 Discrete Optical Fiber Sensing Network Technology
487(50)
13.1 Theory of Optical Fiber Sensing Network
487(2)
13.1.1 Discrete Optical Fiber Sensing Network
487(1)
13.1.2 Distributed Optical Fiber Sensing Network
488(1)
13.2 Robustness Evaluation Model
489(20)
13.2.1 Quantitative Robustness Evaluation Model
490(1)
13.2.2 Robustness Evaluation Models for Basic Topologies
491(1)
13.2.2.1 Line Topology
491(1)
13.2.2.2 Ring Topology
492(1)
13.2.2.3 Star Topology
493(1)
13.2.2.4 Bus Topology
494(1)
13.2.3 Performance Evaluation
495(1)
13.2.3.1 Impact of Environmental Settings
495(3)
13.2.3.2 Impact of y and a
498(1)
13.2.4 Robustness Assessment Based on Different Topology
499(4)
13.2.5 Experiment Procedure and Result
503(1)
13.2.5.1 Experimental Robustness Assessment Approach
503(1)
13.2.5.2 Experiment Procedure
503(6)
13.3 Deployment Optimization for One-Dimensional Optical Fiber Sensor Networks
509(13)
13.3.1 Sensor Distance Range
509(2)
13.3.2 Optimum Distance
511(4)
13.3.3 Discussion of Three or More Sensors
515(1)
13.3.4 Sensor Distance of Different Type of Sensors
515(1)
13.3.5 One-Dimensional OFSN Deployment Scheme
516(1)
13.3.6 Experiment and Simulation
517(1)
13.3.6.1 The Experimental Method for Attenuation Coefficient
517(1)
13.3.6.2 Simulation of One-Dimensional FBG Sensor Network Deployment
518(4)
13.4 A Self-Healing Passive Fiber Bragg Grating Sensor Network
522(15)
13.4.1 Experimental Results and Discussions
532(2)
References
534(3)
Part III Distributed Optical Fiber Sensing
537(278)
14 Distributed Vibration Sensing Based on Dual Mach-Zehnder Interferometer
539(56)
14.1 Theory Analysis of Distributed Vibration Sensing Based on Dual Mach-Zehnder Interferometer
539(22)
14.1.1 Principle of System
539(1)
14.1.1.1 Optical Fiber Vibration Sensing Model
539(1)
14.1.1.2 Intrusion Detection Theory
540(2)
14.1.1.3 Intrusion Positioning Theory
542(3)
14.1.2 Performance Affection Factor
545(1)
14.1.2.1 Impact of Sampling Rate on System Positioning Performance
545(1)
14.1.2.2 Impact of Laser Source on System Detection and Positioning Performance
545(4)
14.1.2.3 Impact of the Fiber Birefringence on the System Detection and Positioning Performance
549(6)
14.1.2.4 Impact of Cross-Correlation Delay-Based Estimation Algorithm on the Positioning Performance
555(6)
14.2 Polarization Control Method
561(12)
14.2.1 Polarization-Induced Phase Shift and Polarization-Induced Fading
562(4)
14.2.2 Chaotic Particles Swarm Optimization Algorithm
566(3)
14.2.3 Genetic Algorithm
569(2)
14.2.4 Annealing Algorithm
571(2)
14.3 Interferometer-Based Distributed Vibration Sensing Instrument Design
573(4)
14.4 Signal Process Algorithm and Instrument
577(18)
14.4.1 Endpoint Detection
577(3)
14.4.2 Position Determination
580(6)
14.4.3 Intrusion Pattern Recognition
586(4)
References
590(5)
15 Regional Style Intelligent Perimeter Security Technique Based on Michelson Interferometer
595(30)
15.1 System Principle
595(6)
15.1.1 Principle of the Michelson Interferometer-Based Vibration Sensor
595(2)
15.1.2 Intrusion Judgment Theory of the Regional Style Perimeter Security System
597(2)
15.1.3 The Faraday Rotator Mirror-Based Polarization Control Method
599(2)
15.2 Intrusion Detection Algorithm
601(13)
15.2.1 Analysis of Various Kinds of Sensing Signal
601(2)
15.2.2 Fast Intrusion Detection Algorithm
603(6)
15.2.3 Selection of the Algorithm Parameter
609(5)
15.3 Instrument Design
614(4)
15.4 Perimeter Security Application
618(7)
15.4.1 Single Defense Zone Experiment
620(1)
15.4.2 Multiple Defense Zones Experiment
620(1)
15.4.3 Experiment on the Environmental Noise
621(2)
References
623(2)
16 Distributed Temperature Sensing Based on Raman Scattering
625(32)
16.1 Raman Scattering Theory
625(4)
16.1.1 Theory of Electromagnetic Radiation
626(2)
16.1.2 Theory of Quantum
628(1)
16.2 Principle of System
629(1)
16.3 System Design
630(1)
16.4 Temperature Demodulation Method
631(10)
16.4.1 Single-End Demodulation
632(1)
16.4.1.1 Stokes Demodulate Anti-Stokes
632(1)
16.4.1.2 Anti-Stokes Self-Demodulation
633(2)
16.4.2 Double-End Demodulation
635(6)
16.5 Denoising Algorithm
641(8)
16.5.1 Cumulative Average Denoising
641(1)
16.5.2 Wavelet Transform Modulus Maximum
642(1)
16.5.2.1 Principle of Wavelet Transform and Modulus Maximum Denoising
642(1)
16.5.2.2 Dynamic Difference Noise Algorithm
643(1)
16.5.2.3 Wavelet Modulus Maximum Value Denoising for Raman Temperature Measurement Experiment
644(5)
16.6 Main Technical Indicators of Sensors
649(8)
16.6.1 Sensing Distance
650(1)
16.6.2 Temperature Resolution
650(1)
16.6.3 Temperature Accuracy
651(1)
16.6.4 Spatial Resolution
652(1)
16.6.4.1 Laser Pulse Width
652(1)
16.6.4.2 Photodetector Response Time
652(1)
16.6.4.3 The Time of A/D Conversion
653(1)
16.6.4.4 Rise Edge of External Trigger Pulse
653(1)
16.6.4.5 Synchronization of Two Signals
653(1)
References
654(3)
17 Distributed Acoustic Sensing Based on Optical Time-Domain Reflectometry
657(52)
17.1 Theory of Optical Time-Domain Reflectometry
657(9)
17.1.1 Direct-Detection-Based Phase Optical Time-Domain Reflectometry
660(3)
17.1.2 Coherent-Detection-Based Phase Optical Time-Domain Reflectometry
663(3)
17.2 Pulse Modulation Method
666(5)
17.3 Acoustic Sensitivity Enhance Method of Optical Fiber
671(3)
17.4 Dual-Pulse Coherent Phase Optical Time-Domain Reflectometry
674(13)
17.4.1 Hybrid Demodulation Based on Phase Diversity and Dual Pulse
675(5)
17.4.2 Digital Orthogonal Phase Code Dual Pulse
680(1)
17.4.3 Self-Copied Virtual Dual Pulse
681(6)
17.5 Linear-Frequency-Modulation Pulse Phase Optical Time-Domain Reflectometry
687(22)
17.5.1 Distributed Acoustic Sensor Based on Digital LFM Pulse and Coherent Detection
691(5)
17.5.2 Digital Differential Sensing Based on Dual-Sideband-Mirrored LFM Pulse
696(2)
17.5.3 Digital Differential Sensing Based on Virtual Block with LFM Pulse
698(3)
17.5.4 Phase Demodulation Method Based on Dual-LFM-Pulse and Weak Fiber Bragg Gratings Array
701(4)
References
705(4)
18 Distributed Sensing Based on Optical Frequency-Domain Reflectometry
709(62)
18.1 Principle of Optical Frequency-Domain Reflectometry
709(2)
18.2 Measurement Range OFDR Beyond Laser Coherence Length
711(6)
18.3 Laser Frequency Tuning Nonlinearity and Compensation
717(14)
18.3.1 Laser Frequency Tuning Nonlinearity
717(2)
18.3.2 Laser Frequency Tuning Nonlinearity Compensation Using Non-uniform Fast Fourier Transform
719(4)
18.3.3 Laser Frequency Tuning Nonlinearity Compensation Using Deskew Filter
723(7)
18.3.4 Dynamic OFDR
730(1)
18.3.5 Dynamic OFDR-Based Fractional Fourier Transform
730(1)
18.3.6 Time-Gated Digital OFDR
730(1)
18.3.7 Kerr Phase-Interrogator-Based OFDR
730(1)
18.3.8 Summary of Methods for Long-Range OFDR
730(1)
18.4 Distributed Sensing System and Application
731(40)
18.4.1 Distributed Vibration Sensing Based on Correlation Analysis
731(1)
18.4.1.1 Distributed Vibration Sensing Based on Correlation Analysis Using the Spatial Domain Signals
731(9)
18.4.1.2 Distributed Vibration Sensing Based on Correlation Analysis Using the Frequency-Domain Signals
740(1)
18.4.1.3 Distributed Vibration Sensing Based on Correlation Analysis Using Multi-characteristics of Rayleigh Backscattering
740(4)
18.4.2 Distributed Strain and Temperature Measurement
744(1)
18.4.2.1 Principle of RBS-Based Sensing
744(1)
18.4.2.2 Strain and Temperature Discrimination
745(3)
18.4.2.3 Strain and Temperature Discrimination Using Two Types of Fibers
748(1)
18.4.3 Distributed Magnetic Field and Current Sensor Based on Magnetostriction
749(3)
18.4.4 Distributed Refractive Index Sensor Based on Taper Fiber
752(1)
18.4.4.1 Principle of Distributed RI Sensing
753(2)
18.4.4.2 Experimental Setup of Distributed RI Sensing
755(1)
18.4.4.3 Experimental Results and Discussion of Distributed RI Sensing
756(4)
18.4.5 Distributed Sensing for Other Applications
760(1)
18.4.5.1 3D Shape Sensing
760(1)
18.4.5.2 Radiation
761(1)
18.4.5.3 Gas
761(1)
18.4.5.4 Flow Rate
761(1)
18.4.5.5 Rayleigh Scattering-Enhanced Fiber
761(1)
18.A Detail Derivation of τref Estimation
762(1)
18.B Detail Derivation of τref Estimation by Higher-Order Taylor Expansion
762(1)
References
762(9)
19 Distributed Sensing Based on Brillouin Optical Correlation-Domain Analysis
771(44)
19.1 Theory of BOCDA Based on Stimulated Brillouin Scattering
772(2)
19.2 Frequency-Modulation Systems by Periodic Sinusoidal Waveforms
774(13)
19.2.1 Millimeter-Order Spatial Resolution Using Beat Lock-In Detection
774(3)
19.2.2 Resolution Points Enhanced Using Differential Measurement
777(5)
19.2.3 Measurement Speed Promotion Using Time-Domain Interrogation
782(2)
19.2.4 Dynamic Strain Measurement Using High-Speed Sweeper and Sampler
784(3)
19.3 Phase-Modulation Systems by High-Rate Binary Sequences
787(10)
19.3.1 Principle of Phase-Coded BOCDA
787(3)
19.3.2 Overlay of Pulses on the Phase-Modulated Continuous Pump Wave
790(4)
19.3.3 Combination of Amplitude and Phase Sequence Coding
794(3)
19.4 High-Resolution Long-Range Chaotic Laser Sensors
797(18)
19.4.1 Principle of Chaotic BOCDA
797(3)
19.4.2 Measurement Range Enlargement with Suppressed Noise Background
800(1)
19.4.2.1 Time Delay Signature-Suppressed Scheme
800(1)
19.4.2.2 Time-Gated Scheme
801(5)
19.4.3 Millimeter-Level Spatial Resolution Based on Broadband Chaos
806(6)
References
812(3)
Index 815
Tiegen Liu, PhD, is Professor in the School of Precision Instrument and Opto-Electronics Engineering at Tianjin University, China.

Junfeng Jiang, PhD, is Professor in the School of Precision Instrument and Opto-Electronics Engineering at Tianjin University, China.

Kun Liu, PhD, is Associate Professor in the School of Precision Instrument and Opto-Electronics Engineering at Tianjin University, China.

Shuang Wang, PhD, is Assistant Professor in the School of Precision Instrument and Opto-Electronics Engineering at Tianjin University, China