Atjaunināt sīkdatņu piekrišanu

E-grāmata: Optical Sensors: Industrial Environmental and Diagnostic Applications

  • Formāts - PDF+DRM
  • Cena: 154,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Optical sensor technology has reached a level of technological maturity that makes it a promising candidate for applications to specific sensing challenges including those in environmental monitoring, in process control (particularly in biotechnology), in clinical assays where low-cost one-way sensing elements are needed, and in other areas. Optical sensors can be used as fiber optic microsensors, as planar coatings in bioreactors, in microtiterplate format, in disposable single-shot devices, and as planar membranes that can be imaged using sensitive cameras. The spectral range extends from the UV to the infrared, and from absorption to emission and to surface plasmon resonance. Hence, a variety of schemes are conceivable, and this first volume of the Springer Series on Chemical Sensors and Biosensors gives a state-of-the-art description of this highly sophisticated but very promising technology.

Recenzijas

From the reviews:









"This book is particularly summarizing the various types and developments in optical sensor technology during the past two decades, and gives also an insight to the future trends in this permanently growing field. This book is providing knowledge on a variety of optical sensor techniques and is, therefore, highly recommended to graduate students and experienced researchers, who are engaged in this interesting scientific field in academia and industry." (Advances in Food Science AFS, Vol. 27 (1), 2005)



"This book summarized various types of developments in optical sensor science over the past two decades with an insight to future trends. This book will be useful for scientists and students working in the field of optical sensors and biosensors, particularly modern immuno- and genosensors." (Chemia Analityczna, Issue 49, 2004)



"This book provides a good overview of the state of the art in optical sensors for industrial, environmental and diagnostic applications. This unique book contributes a concise collection of knowledge to this highly interdisciplinary field . is an ideal starting point for interested readers and a valuable source of information to scientists. The high density of information together with a trend analysis of future directions provides a highly valuable content to the readership." (Guenther Proll, Analytical and Bioanalytical Chemistry, Vol. 381, 2005)

Papildus informācija

Springer Book Archives
Chapter 1 Optical Technology until the Year 2000: An Historical Overview
Otto S. Wolfbeis
1 Introduction
1(1)
2 Very Early History
2(1)
3 Early History (up to about 1985)
3(3)
4 Optical Sensors for Gases (Including Dissolved Gases) and Organics
6(3)
5 Opt(r)odes for pH
9(2)
6 Optical Sensors for Ions
11(4)
7 Enzyme-Based Biosensors
15(1)
8 Fiber Optic Systems
15(2)
9 Signal Referencing
17(3)
10 Optical Sensing Schemes
20(3)
11 Materials for Optical Chemical Sensors and Biosensors
23(3)
12 Imaging and Pressure-Sensitive Paints
26(2)
13 Commercial Instrumentation Using Opt(r)odes
28(2)
References
30(5)
Chapter 2 Molecularly Imprinted Polymers for Optical Sensing Devices
Marta Elena Diaz-Garcia
Rosana Badia
1 Introduction
35(1)
2 Molecular Imprinting Process
36(3)
2.1 Covalent Molecular Imprinting
37(1)
2.2 Self-assembly Molecular Imprinting
38(1)
3 Polymer Composition
39(4)
3.1 Templates
39(1)
3.2 Type of Monomer and Crosslinker
40(2)
3.3 Porogenic Solvents
42(1)
3.4 Radical Initiators
42(1)
4 MIP Optical Sensing Applications
43(5)
4.1 Optical Sensing Approaches for Metals of Environmental Concern
43(1)
4.1.1 Imprinted Metal Ion Sensors Based on Polymerizable Metal Chelates (Covalent Imprinting)
43(1)
4.1.2 Optical Sensors Based on Non-covalent Imprinting of Fluorescent Metal Chelates
44(1)
4.2 Optical Sensing Approaches for Environmental Harmful Compounds
45(3)
4.3 MIP Optical Sensing Materials for Organic Volatile Compounds
48(1)
5 Conclusions and Outlook
48(1)
References
48(3)
Chapter 3 Chromogenic and Fluorogenic Reactands: New Indicator Dyes for Monitoring Amines, Alcohols and Aldehydes
Gerhard J. Mohr
1 Introduction
51(2)
2 Sensing Amines
53(6)
2.1 Trifluoroacetylazobenzene Dyes
53(4)
2.2 Trifluoroacetylazobenzene Copolymers
57(2)
3 Sensing Alcohols
59(3)
3.1 Trifluoroacetylstilbenes
59(3)
4 Sensing Aldehydes
62(2)
4.1 Perylene Tetracarboxylbisimides
62(2)
5 Conclusions and Outlook
64(1)
References
65(2)
Chapter 4 Design, Quality Control and Normalization of Biosensor Chips
Claudia Preininger
Ursula Sauer
1 Introduction
67(2)
2 Principle
69(1)
3 Biochip Fabrication
70(6)
3.1 Biomolecular Probes
70(1)
3.2 Array Manufacture
70(3)
3.3 Slides and Immobilization
73(3)
4 Optical Read-out
76(3)
5 Quality Control
79(3)
5.1 Autofluorescence
79(1)
5.2 Arraying
79(1)
5.3 Print buffer
80(1)
5.4 Immobilization
80(1)
5.5 Fluorescent Label
81(1)
5.6 Validation
81(1)
6 Data Collection and Analysis
82(4)
6.1 Imaging
82(1)
6.2 Image Analysis
83(1)
6.3 Background
84(1)
6.4 Quantification
85(1)
6.5 Normalization
86(1)
7 Statistical Analysis
86(2)
References
88(5)
Chapter 5 Rapid, Multiplex Optical Biodetection for Point-of-Care Applications
Frank Y. S. Chuang
Bill W. Colston, Jr.
1 Need for Advanced Biodetection
93(1)
2 Fundamental Principles of Biodetection
94(3)
3 Development of Optical Methods for Biodetection
97(7)
3.1 Sandwich Immunoassays - ELISA
97(1)
3.2 Lateral Flow Assays - "Strip" Tests
98(1)
3.3 Fixed Microarrays - DNA Gene Chip
99(2)
3.4 Liquid Microarrays - Luminex Flow System
101(3)
4 Multiplex Immunoassay Diagnostic System (MIDS)
104(14)
4.1 Disposable Sample Collection Unit
105(4)
4.2 CCD-based Optical Hardware
109(3)
4.3 Digital Image Analysis Software
112(1)
4.4 Preliminary Results
112(5)
4.5 Discussion
117(1)
5 Conclusions and Future Directions
118(1)
References
119(2)
Chapter 6 Multi-functional Biochip for Medical Diagnostics and Pathogen Detection
Tuan Vo-Dinh
Guy Griffin
David L. Stokes
Dimitra N. Stratis-Cullum
Minoo Askari
Alan Wintenberg
1 Introduction
121(1)
2 The Multi-functional Biochip
121(4)
2.1 Integrated Circuit Development of the Biochip
123(2)
3 Experimental Systems and Procedures
125(7)
3.1 Instrumentation
125(1)
3.1.1 Optical Setup
125(1)
3.1.2 The Biofluidics System
126(1)
3.2 Preparation of DNA Probes
127(1)
3.3 Protocol for DNA Studies
127(2)
3.4 Protocol for Antibody Studies
129(1)
3.4.1 Assay for E. coli
129(1)
3.4.2 Assay for FHIT Protein
130(1)
3.5 Protocol for DNA/Antibody Combined Assay
131(1)
3.6 Protocol for ELISA-based Detection of B. globigii
131(1)
4 Results and Discussion
132(9)
4.1 Fundamental Evaluations of the IC Biochip via Off-chip Bioassays
132(3)
4.2 Application of the ELISA Technique to Biochip-based Detection
135(1)
4.3 Evaluation of the Biofluidics-based Biochip System for On-chip Bioanalysis
136(1)
4.3.1 Assay for E.coli
137(2)
4.3.2 Assay for FHIT Protein
139(1)
4.4 Portable IC Biochip Prototype with Biofluidic System
140(1)
5 Conclusion
141(1)
List of Abbreviations
142(1)
References
142(3)
Chapter 7 Surface Plasmon Resonance Biosensors for Food Safety
Jiri Homola
1 Introduction
145(1)
2 Fundamentals of Surface Plasmon Resonance (SPR) Biosensors
146(10)
2.1 Surface Plasmon-Polaritons and their Excitation by Light Waves
146(4)
2.2 Surface Plasmon Resonance Sensors
150(4)
2.3 Surface Plasmon Resonance Biosensors
154(1)
2.4 Advantages and Drawbacks of SPR Biosensors
155(1)
3 Implementations of SPR Biosensors
156(10)
3.1 Surface Plasmon Resonance Platforms
156(1)
3.1.1 SPR Sensors Using Prism Couplers
156(2)
3.1.2 SPR Sensors Using Grating Couplers
158(1)
3.1.3 SPR Sensors Using Optical Waveguides
159(1)
3.2 Biomolecular Recognition Elements and their Immobilization
160(1)
3.3 Biomolecular Interactions
161(1)
3.4 Detection Formats used in SPR Biosensors
161(5)
4 SPR Biosensors for Detection of Food Safety-related Analytes
166(4)
4.1 SPR Biosensor-based Detection of Chemical Contaminants
166(1)
4.2 SPR Biosensor-based Detection of Toxins
167(1)
4.3 SPR Biosensor-based Detection of Microbial Pathogens
168(2)
5 Summary
170(1)
References
171(2)
Chapter 8 NIR Dyes for Ammonia and HCI Sensors
Peter Simon
Frank Kvasnik
1 Introduction
173(1)
2 NIR Transducers
174(19)
2.1 Structure and Tests of NIR Ammonia Transducers
175(1)
2.1.1 Metal Complexes
175(6)
2.1.2 Polymethine Dyes
181(9)
2.2 Structure and Tests of NIR pH Transducers
190(3)
3 Quantum-chemical Calculations and General Rules
193(2)
4 Influence of Matrix Quality on the Band Shape and Maximum Wavelength
195(1)
5 Fibre-optic Distributed Sensors
196(2)
6 Conclusions
198(1)
References
199(4)
Chapter 9 Piezo-Optical Dosimeters for Occupational and Environmental Monitoring
Kelly R. Bearman
David C. Blackmore
Timothy J. N. Carter
Florence Colin
Steven A. Ross
John D. Wright
1 Introduction
203(4)
2 Calibration and Evaluation of New Badges
207(2)
3 Badges for Formaldehyde Monitoring
209(2)
4 Badges for Glutaraldehyde Monitoring
211(4)
5 Badge for Monitoring Chlorine Dioxide
215(1)
6 Badge for Monitoring Ozone
216(1)
7 Badge for Monitoring Nitrogen Dioxide
217(1)
8 Badge for Monitoring Styrene
218(1)
9 Badge for Monitoring Ammonia
219(2)
10 Multi-analyte Badges and the Minimisation of Interference
221(1)
11 Fundamentals of the Piezo-optical Measurement
222(1)
12 Future Development Prospects
223(2)
References
225(2)
Chapter 10 Interferometric Biosensors for Environmental Pollution Detection
L.M. Lechuga
F. Prieto
B. Sepulveda
1 Background of Interferometer Biosensors
227(2)
2 Optical Waveguides
229(6)
2.1 Monomode Behaviour
231(2)
2.2 Surface Sensitivity
233(2)
3 Principle of Operation of Interferometric Sensors
235(2)
3.1 Technology of Fabrication
236(1)
4 Types of Interferometer Devices: State-of-the-Art
237(9)
4.1 Fabry-Perot Interferometer
237(1)
4.2 Mach-Zehnder Interferometer
238(1)
4.3 Planar Versions
238(2)
4.4 Integrated Versions
240(3)
4.5 Young Interferometer
243(3)
5 Surface Functionalization for Biosensing
246(1)
6 Environmental Applications
246(1)
7 Future Trends
247(1)
References
248(3)
Chapter 11 Fibre-optic Sensors for Humidity Monitoring
Maria C. Moreno-Bondi
Guillermo Orellana
Maximino Bedoya
1 Introduction
251(1)
2 Definitions
252(1)
3 Measurement of Humidity
253(8)
3.1 Relative Humidity Monitoring
253(1)
3.1.1 Psychrometers
253(1)
3.1.2 Mechanical (Displacement) Hygrometers
254(1)
3.1.3 Electric Hygrometers
255(1)
3.2 Dew Point Sensors
255(1)
3.2.1 Chilled Mirror (Optical Condensation) Hygrometers
256(1)
3.2.2 Optical Absorption Hygrometers
256(1)
3.3 Measurement of Trace Moisture
256(1)
3.3.1 Mass Sensitive Devices (Gravimetric Method)
257(1)
3.3.2 Coulometric (Electrolytic) Method
257(1)
3.4 Miscellaneous Humidity Sensors
257(4)
4 Fibre-optic Humidity Sensors
261(16)
4.1 Fibre-optic Sensors Based on Absorption Measurements
261(7)
4.2 Fibre-optic Sensors Based on Luminescent Reagents
268(5)
4.3 Optical Sensors Based on Variations of the Refractive Index
273(2)
4.4 Fibre-optic Sensors Based on Changes in the Reflectivity of Thin Films
275(2)
5 Calibration of Humidity Sensors
277(1)
6 Conclusions
278(1)
References
278(3)
Chapter 12 Optical Sensing of pH in Low Ionic Strength Waters
Ben R. Swindlehurst
Ramaier Narayanaswamy
1 Introduction
281(2)
2 Optical pH Sensors
283(12)
3 Materials and Methods
295(2)
3.1 Immobilisation by the Mannich Reaction and Manufacture of Sensing Film
295(1)
3.2 Probe Head Design and Flow Cell Construction
295(2)
4 Instrumentation
297(2)
4.1 Choice of Wavelengths
298(1)
5 Results and Discussion
299(5)
5.1 Variation of System Response between Films
299(1)
5.2 Temperature Response
300(1)
5.3 Longevity of Sensing Films
301(1)
5.4 Effect of Ionic Strength
302(2)
List of Abbreviations
304(1)
References
305(4)
Chapter 13 Environmental and Industrial Optosensing with Tailored Luminescent Ru(II) Polypyridyl Complexes
Guillermo Orellana
David Garcia-Fresnadillo
1 Introduction
309(1)
2 Ru(II) Polypyridyl Complexes
310(16)
2.1 Light Absorption Features
312(2)
2.2 Luminescence Features
314(4)
2.3 Redox Features
318(1)
2.4 Preparation
319(3)
2.5 Physical Properties
322(2)
2.6 Photochemistry
324(2)
3 Acidity Sensors
326(3)
4 Carbon Dioxide Sensors
329(2)
5 Temperature Sensors
331(1)
6 Oxygen Sensing with Luminescent Ru(II) Polypyridyl Dyes
331(18)
6.1 Oxygen Optosensors
333(1)
6.2 Luminescent Ru(II) Complexes as Oxygen Indicators
334(1)
6.3 Polymer Support and Indicator Design
334(5)
6.4 Luminescence Quenching Models in Heterogeneous Supports
339(4)
6.5 Instrumentation Used in Oxygen Sensing with Ru(II) Dyes
343(1)
6.6 Applications
344(5)
7 Miscellaneous Sensors and Concluding Remarks
349(1)
List of Abbreviations and Symbols
350(2)
References
352(7)
Chapter 14 TIFR Array Biosensor for Environmental Monitoring
Kim E. Sapsford
Frances S. Ligler
1 Introduction to Biosensors
359(2)
1.1 Biosensors for Environmental Applications
360(1)
2 Technical Aspects of Optical Array Biosensors
361(14)
2.1 Optical Transduction Used in Array Biosensors
362(1)
2.1.1 Total Internal Reflection
362(1)
2.1.2 Interferometric Techniques
363(2)
2.1.3 SPR Imaging
365(2)
2.1.4 TIRF
367(1)
2.2 The Molecular Recognition Element
368(1)
2.2.1 Immunoassays
368(2)
2.2.2 DNA and mRNA Analysis
370(1)
2.2.3 Membrane Receptor-ligand Interactions
370(1)
2.3 Immobilization of the Biomolecule to the Transducer
371(2)
2.4 Creation of Low Density Biomolecular Arrays
373(2)
3 State of the Art
375(3)
4 Miniaturization and Automation of Array Biosensors
378(4)
5 The Future
382(3)
List of Abbreviations
385(1)
References
386(5)
Chapter 15 Optical Techniques for Determination and Sensing of Hydrogen Peroxide in Industrial and Environmental Samples
Hannes Voraberger
1 Introduction
391(2)
2 Direct Spectrometric Measurements of Hydrogen Peroxide
393(5)
2.1 Hydrogen Peroxide in the Mid Infrared (Wavelength Range: 2.5-20 μm)
393(3)
2.2 Near Infrared Spectroscopy of Hydrogen Peroxide
396(1)
2.3 Ultraviolet Spectroscopy of Hydrogen Peroxide
397(1)
3 Indirect Spectrometric Measurements of Hydrogen Peroxide
398(8)
3.1 Introduction
398(1)
3.2 Formation of a Dye by Oxidative Coupling Reaction
399(3)
3.3 Formation of a Dye by Oxidation of Leuco Dyes
402(2)
3.4 Formation of a Colored or Fluorescent Complex
404(1)
3.5 Destruction of a Dye
404(1)
3.6 Chemiluminescence
405(1)
3.7 Indirect Measurement by Quenching of Fluorescence by Molecular Oxygen
406(1)
4 Conclusions
406(1)
References
407(2)
Subject Index 409
Dr. Narayanaswamy is a Reader in Analytical Science at the University of Manchester Institute of Science and Technology. He has over 30 years experience in Analytical Chemistry including over 20 years research in Optical Chemical Sensors & Biosensors and instrumentation. He has about 150 publications, majority of which is in the field of optical sensors that include contributions to textbooks. He is member of the permanent steering committee of Europt(r)ode and a Fellow of the Royal Society of Chemistry.



Prof. Wolfbeis is professor of analytical and interface chemistry at the university of Regensburg. He has a >20 year experience in optical chemical sensing and biosensing, has authored/edited the first book on the subject in (1991) along with approximately 150 original articles on the subject. He is the chairman of the permanent steering committee of Europt(r)ode (the biannual Eur. conference on optical chemical sensor and biosensors).