Atjaunināt sīkdatņu piekrišanu

E-grāmata: Optically Polarized Atoms: Understanding light-atom interactions

(Graduate Student Researcher, University of California at Berkeley, California, USA), (Professor of Physics, University of California at Berkeley, California), (Professor of Physics, Department of Physics, University of Latvia, Latvia)
  • Formāts: PDF+DRM
  • Izdošanas datums: 22-Jul-2010
  • Izdevniecība: Oxford University Press
  • Valoda: eng
  • ISBN-13: 9780191576546
  • Formāts - PDF+DRM
  • Cena: 28,54 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 22-Jul-2010
  • Izdevniecība: Oxford University Press
  • Valoda: eng
  • ISBN-13: 9780191576546

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Optically Polarized Atoms is addressed at upper-level undergraduate and graduate students involved in research in atomic, molecular, and optical Physics. It will also be useful to researchers practicing in this field. It gives an intuitive, yet sufficiently detailed and rigorous introduction to light-atom interactions with a particular emphasis on the symmetry aspects of the interaction, especially those associated with the angular momentum of atoms and light. The book will enable readers to carry out practical calculations on their own, and is richly illustrated with examples drawn from current research topics, such as resonant nonlinear magneto-optical effects. The book comes with a software package for a variety of atomic-physics calculations and further interactive examples that is freely downloadable from the book's web page, as well as additional materials (such as power-point presentations) available to instructors who adopt the text for their courses.

Recenzijas

I highly recommend Optically Polarized Atoms and will probably use it next time I teach my graduate course. [ ...] The book is specifically intended for use in a one-semester course in which the symmetry and angular-momentum aspects of atomic structure and laser-atom interactions are central. [ ...] The level of detail and the clarity of explanations are admirable. * Daniel F.V. James, Physics Today * The recently published book "Optically Polarized Atoms" by Marcis Auzinsh, Dmitry Budker and Simon M. Rochester will be a unique and valuable addition to the library of anyone -- students or established researchers[ ...]It provides a rich mine of information about atomic physics that is hard to find elsewhere. I intend to keep a copy on my shelf of favorite physics books. * William Happer, Princeton University *

List of acronyms xi
Part I Introduction To Light–atom Interactions
1 Introduction
3(5)
1.1 Why was this book written?
3(1)
1.2 How to use this book
3(1)
1.3 Relation to other texts
4(1)
1.4 Formalism of quantum mechanics
5(3)
2 Atomic states
8(22)
2.1 Energy states of the hydrogen atom
8(1)
2.2 Angular momentum of the electron in the hydrogen atom
9(10)
2.3 Multi-electron atoms
19(7)
2.4 Hyperfine interactions and hyperfine structure of atomic states
26(1)
2.5 Parity of atomic states
27(3)
3 A bit of angular-momentum theory
30(25)
3.1 Classical rotations
30(6)
3.2 Quantum-mechanical rotations
36(3)
3.3 The angular-momentum operator
39(4)
3.4 Rotations in the Zeeman basis
43(2)
3.5 Addition of angular momenta; Clebsch–Gordan coefficients
45(1)
3.6 3j and 6j symbols
46(3)
3.7 Irreducible tensors and tensor products
49(2)
3.8 The Wigner–Eckart theorem
51(4)
4 Atoms in external electric and magnetic fields
55(27)
4.1 Linear Zeeman effect
55(3)
4.2 Zeeman effect in the manifold of hyperfine levels, Breit–Rabi diagrams
58(4)
4.3 Atoms in an electric field: the Stark effect
62(10)
4.4 Combined effect of electric and magnetic fields
72(3)
4.5 Atoms in oscillating fields
75(7)
5 Polarized atoms
82(27)
5.1 The density matrix
82(6)
5.2 Rotation of density matrices
88(1)
5.3 Angular-momentum probability surfaces
89(1)
5.4 Angular-momentum probability surfaces and the density matrix: equivalence and symmetries
90(2)
5.5 Temporal evolution of the density matrix: the Lionville equations
92(2)
5.6 Example: alignment-to-orientation conversion
94(2)
5.7 Multipole moments
96(13)
6 Polarized light
109(17)
6.1 The light polarization ellipse
110(4)
6.2 Partially polarized light and unpolarized light
114(2)
6.3 Spin angular momentum of polarized light
116(2)
6.4 Spherical basis for light polarization
118(3)
6.5 The polarization density matrix
121(1)
6.6 Angular-momentum probability surfaces for light
122(1)
6.7 Stokes parameters for partially polarized light
123(3)
7 Atomic transitions
126(33)
7.1 Two-level system under the action of a periodic perturbation
126(3)
7.2 Selection rules for electric-dipole transitions
129(4)
7.3 Probability calculation for electric-dipole transitions
133(8)
7.4 Line strength
141(3)
7.5 Higher-multipole radiative transitions
144(4)
7.6 Multipole expansion
148(4)
7.7 Two-photon and multi-photon transitions
152(1)
7.8 Visualization of atomic transitions
153(6)
8 Coherence in atomic systems
159(10)
8.1 Dark and bright states
159(5)
8.2 Quantum beats
164(2)
8.3 The Hanle effect
166(3)
9 Optical pumping
169(17)
9.1 Linear and nonlinear processes; saturation parameters
169(4)
9.2 Optical pumping on closed transitions
173(10)
9.3 Optical pumping on open transitions
183(3)
10 Light-atom interaction observed in transmitted light
186(33)
10.1 Effect of atoms on transmitted light
186(4)
10.2 Magneto-optical effects with linearly polarized light
190(23)
10.3 Perturbative approach
213(6)
Part II Advanced Topics
11 Nonlinear magneto-optical rotation
219(20)
11.1 Nested nonlinear magneto-optical rotation features
219(1)
11.2 Bennett-structure effects
220(1)
11.3 The role of alignment-to-orientation conversion in nonlinear magneto-optical rotation
221(3)
11.4 Buffer-gas vapor cells
224(1)
11.5 Antirelaxation-coated cells
225(3)
11.6 Optically thick media
228(6)
11.7 Nonlinear magneto-optical rotation with modulated light
234(5)
12 Perturbative and approximate methods for light–atom interactions
239(18)
12.1 Polarization transfer in spontaneous decay
239(4)
12.2 Perturbative solution of the steady-state density matrix
243(1)
12.3 The optical-field case
244(2)
12.4 Repopulation and depopulation
246(2)
12.5 Optical excitation
248(1)
12.6 Absorption and optical rotation signals
248(4)
12.7 What kind of atomic polarization can influence the absorption and emission of light?
252(1)
12.8 The broad-line approximation
252(5)
13 Polarization effects in transitions with partially resolved hyperfine structure
257(14)
13.1 Depopulation pumping
259(4)
13.2 Excited state and repopulation pumping
263(3)
13.3 Absorption
266(3)
13.4 Fluorescence
269(1)
13.5 Comparison of different cases
269(2)
14 The effect of hyperfine splitting on nonlinear magneto-optical rotation
271(18)
14.1 Doppler-free transit effect
272(5)
14.2 Doppler-broadened transit effect
277(3)
14.3 Wall effect
280(3)
14.4 Higher nuclear spin and the D2 line
283(4)
14.5 Comparison of quantitative results for different cases
287(2)
15 Coherence effects revisited
289(14)
15.1 Dark and bright states
289(3)
15.2 Quantum beats
292(4)
15.3 The Hanle effect
296(7)
16 Collapse and revival in quantum beats
303(6)
17 Nuclear quadrupole resonance and alignment-to-orientation conversion
309(5)
18 Selective addressing of high-rank polarization moments
314(15)
18.1 General technique and production and detection of the x = 2 and x = 4 moments
314(5)
18.2 Production and observation of the K 6 hexacontatetrapole moment
319(3)
18.3 Production and detection of the hexadecapole moment in the Earth's magnetic field
322(7)
19 Tensor structure of the DC- and AC-Stark polarizabilities
329(4)
20 Photoionization of polarized atoms with polarized light
333(11)
20.1 Photoionization cross-section
334(2)
20.2 Formulas for σ 0,1,2
336(3)
Appendix A Constants, units, and notations 339(3)
Appendix B Units of energy, frequency, and wavelength 342(1)
Appendix C Reference data for hydrogen and the alkali atoms 343(1)
Appendix D Classical rotations 344(8)
D.1 Rotations in the Cartesian basis
344(3)
D.2 The spherical basis
347(5)
Appendix E Nonlinear magneto-optical rotation with hyperfine structure 352(6)
E.1 Perturbation theory with polarization moments
352(2)
E.2 Doppler-free transit effect
354(2)
E.3 Doppler-broadened transit effect
356(1)
E.4 Wall effect
357(1)
Appendix F The Atomic Density Matrix software package 358(2)
Bibliography 360(7)
Index 367
Marcis Auzinsh is the Rector of the University of Latvia, where he was previously Chairman of the Senate, Dean of the Faculty of Physics and Mathematics, and Head of Center of Excellence for Basic Research in Nanoscale Physics and Application. He has held visiting positions at universities around the world, and is a Member of Executive Commitee of the European Physical Society.

Dmitry Budker took his PhD at the University of California at Berkeley, where he won the 1994 American Physical Society Award for Outstanding Doctoral Thesis Research in Atomic, Molecular, or Optical Physics. He is now a Professor of Physics there. In 2005 he was elected a Fellow of the American Physical Society, and in 2009 became a American Physical Society Outstanding Referee.





Simon M. Rochester is a Graduate Student Researcher at the University of California at Berkeley, where he holds a NASA Earth System Science Fellowship.