Atjaunināt sīkdatņu piekrišanu

Optics: Learning by Computing, with Examples Using Maple, Mathcad, Mathematica, and Matlab [Multiple-component retail product]

  • Formāts: Multiple-component retail product, 459 pages, height: 230 mm, 281 illus., Contains 1 Hardback and 1 CD-ROM
  • Sērija : Undergraduate Texts in Contemporary Physics
  • Izdošanas datums: 06-Dec-2002
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 0387953604
  • ISBN-13: 9780387953601
Citas grāmatas par šo tēmu:
  • Multiple-component retail product
  • Cena: 71,88 €*
  • * Šī grāmata vairs netiek publicēta. Jums tiks paziņota lietotas grāmatas cena
  • Šī grāmata vairs netiek publicēta. Jums tiks paziņota lietotas grāmatas cena.
  • Daudzums:
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Formāts: Multiple-component retail product, 459 pages, height: 230 mm, 281 illus., Contains 1 Hardback and 1 CD-ROM
  • Sērija : Undergraduate Texts in Contemporary Physics
  • Izdošanas datums: 06-Dec-2002
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 0387953604
  • ISBN-13: 9780387953601
Citas grāmatas par šo tēmu:
This book is intended for a one-semester course in optics for juniors and seniors in science and engineering; it uses Mathcad scripts to provide a simulated laboratory where students can learn by exploration and discovery instead of passive absorption. The text covers all the standard topics of a traditional optics course, including: geometrical optics and aberration, interference and diffraction, coherence, Maxwells equations, wave guides and propagating modes, blackbody radiation, atomic emission and lasers, optical properties of materials, Fourier transforms and FT spectroscopy, image formation, and holography. It contains step by step derivations of all basic formulas in geometrical, wave and Fourier optics. The basic text is supplemented by over 170 Mathcad files, each suggesting programs to solve a particular problem, and each linked to a topic in or application of optics. The computer files are dynamic, allowing the reader to see instantly the effects of changing parameters in the equations. Students are thus encouraged to ask "what...if" questions to assess the physical implications of the formulas.
Preface vii
Geometrical Optics
1(76)
Introduction
1(1)
Fermat's Principle and the Law of Refraction
2(5)
Prisms
7(2)
Angle of Deviation
7(2)
Convex Spherical Surfaces
9(10)
Image Formation and Conjugate Points
9(2)
Sign Convention
11(1)
Object and Image Distance, Object and Image Focus, Real and Virtual Objects, and Singularities
11(4)
Real Objects, Geometrical Constructions, and Magnification
15(2)
Virtual Objects, Geometrical Constructions, and Magnification
17(2)
Concave Spherical Surfaces
19(4)
Thin Lens Equation
23(12)
Thin Lens Equation
23(1)
Object Focus and Image Focus
24(1)
Magnification
25(1)
Positive Lens, Graph, Calculations of Image Positions, and Graphical Constructions of Images
25(5)
Negative Lens, Graph, Calculations of Image Positions, and Graphical Constructions of Images
30(3)
Thin Lens and Two Different Media on the Outside
33(2)
Optical Instruments
35(13)
Two Lens System
36(1)
Magnifier and Object Positions
37(5)
Microscope
42(2)
Telescope
44(4)
Matrix Formulation for Thick Lenses
48(18)
Refraction and Translation Matrices
48(3)
Two Spherical Surfaces at Distance d and Prinicipal Planes
51(8)
System of Lenses
59(7)
Plane and Spherical Mirrors
66(6)
Plane Mirrors and Virtual Images
66(1)
Spherical Mirrors and Mirror Equation
67(1)
Sign Convention
68(1)
Magnification
68(1)
Graphical Method and Graphs of xi Depending on xo
69(3)
Matrices for a Reflecting Cavity and the Eigenvalue Problem
72(5)
Interference
77(50)
Introduction
77(1)
Harmonic Waves
78(2)
Superposition of Harmonic Waves
80(7)
Superposition of Two Waves Depending on Space and Time Coordinates
80(4)
Intensities
84(2)
Normalization
86(1)
Two-Beam Wavefront Dividing Interferometry
87(7)
Model Description for Wavefront Division
87(1)
Young's Experiment
88(6)
Two-Beam Amplitude Dividing Interferometry
94(14)
Model Description for Amplitude Division
94(1)
Plane Parallel Plate
95(6)
Michelson Interferometer and Heidinger and Fizeau Fringes
101(7)
Multiple Beam Interferometry
108(15)
Plane Parallel Plate
108(5)
Fabry--Perot Etalon
113(3)
Fabry--Perot Spectrometer and Resolution
116(3)
Array of Source Points
119(4)
Random Arrangement of Source Points
123(4)
Diffraction
127(56)
Introduction
127(2)
Kirchhoff--Fresnel Integral
129(5)
The Integral
129(2)
On Axis Observation for the Circular Opening
131(2)
On Axis Observation for Circular Stop
133(1)
Fresnel Diffraction, Far Field Approximation, and Fraunhofer Observation
134(3)
Small Angle Approximation in Cartesian Coordinates
135(1)
Fresnel, Far Field, and Fraunhofer Diffraction
136(1)
Far Field and Fraunhofer Diffraction
137(27)
Diffraction on a Slit
138(4)
Diffraction on a Slit and Fourier Transformation
142(1)
Rectangular Aperture
143(3)
Circular Aperture
146(4)
Gratings
150(10)
Resolution
160(4)
Babinet's Theorem
164(3)
Apertures in Random Arrangement
167(3)
Fresnel Diffraction
170(13)
Coordinates for Diffraction on a Slit and Fresnels Integrals
170(1)
Fresnel Diffraction on a Slit
171(2)
Fresnel Diffraction on an Edge
173(3)
Step Grating
176(3)
Cornu's Spiral
179(1)
Babinet's Principle and Cornu's Spiral
180(3)
Coherence
183(20)
Spatial Coherence
183(15)
Introduction
183(1)
Two Source Points
183(4)
Coherence Condition
187(2)
Extended Source
189(3)
Visibility
192(3)
Michelson Stellar Interferometer
195(3)
Temporal Coherence
198(5)
Wavetrains and Quasimonochromatic Light
198(1)
Superposition of Wavetrains
199(1)
Length of Wavetrains
200(1)
Fourier Tranform Spectometer and Blackbody Radiation
201(2)
Maxwell's Theory
203(42)
Introduction
203(1)
Harmonic Plane Waves and the Superposition Principle
204(2)
Plane Waves
204(2)
The Superposition Principle
206(1)
Differentiation Operation
206(1)
Differentiation ``Time''
206(1)
Differentiation ``Space''
206(1)
Poynting Vector in Vacuum
207(1)
Electromagnetic Waves in an Isotropic Nonconducting Medium
208(1)
Fresnel's Formulas
209(19)
Electrical Field Vectors in the Plane of Incidence (Parallel Case)
209(3)
Electrical Field Vector Perpendicular to the Plane of Incidence (Perpendicular Case)
212(1)
Fresnel's Formulas Depending on the Angle of Incidence
213(1)
Light Incident on a Denser Medium, n1 < n2, and the Brewster Angle
214(3)
Light Incident on a Less Dense Medium, n1 > n2, Brewster and Critical Angle
217(3)
Reflected and Transmitted Intensities
220(6)
Total Reflection and Evanescent Wave
226(2)
Polarized Light
228(17)
Introduction
228(1)
Ordinary and Extraordinary Indices of Refraction
229(1)
Phase Difference Between Waves Moving in the Direction of or Perpendicular to the Optical Axis
230(1)
Half-Wave Plate, Phase Shift of π
231(2)
Quarter Wave Plate, Phase Shift π/2
233(3)
Crossed Polarizers
236(2)
General Phase Shift
238(2)
Wave Equation Obtained from Maxwell's Equation
240(1)
The Operations Δ and Δ
241(1)
Rotation of the Coordinate System as a Principal Axis Transformation and Equivalence to the Solution of the Eigenvalue Problem
241(1)
Phase Difference Between Internally Reflected Components
242(1)
Jones Vectors and Jones Matrices
242(1)
Jones Matrices
243(1)
Applications
243(2)
Maxwell II. Modes and Mode Propagation
245(24)
Introduction
245(3)
Stratified Media
248(7)
Two Interfaces at Distance d
249(2)
Plate of Thickness d = (&lamda;/2n2)
251(1)
Plate of Thickness d and Index n2
252(1)
Antireflection Coating
252(2)
Multiple Layer Filters with Alternating High and Low Refractive Index
254(1)
Guided Waves by Total Internal Reflection Through a Planar Waveguide
255(7)
Traveling Waves
255(2)
Restrictive Conditions for Mode Propagation
257(1)
Phase Condition for Mode Formation
258(1)
(TE) Modes or s-Polarization
258(3)
(TM) Modes or p-Polarization
261(1)
Fiber Optics Waveguides
262(7)
Modes in a Dielectric Waveguide
262(4)
Boundary Value Method Applied to TE Modes of Plane Plate Waveguide
266(3)
Blackbody Radiation, Atomic Emission, and Lasers
269(40)
Introduction
269(1)
Blackbody Radiaton
270(7)
The Rayleigh--Jeans Law
270(1)
Planck's Law
271(2)
Stefan--Boltzmann Law
273(1)
Wien's Law
274(1)
Files of Planck's, Stefan--Boltzmann's, and Wien's Laws. Radiance, Area, and Solid Angle
275(2)
Atomic Emission
277(4)
Introduction
277(1)
Bohr's Model and the One Electron Atom
278(1)
Many Electron Atoms
278(3)
Bandwidth
281(6)
Introduction
281(1)
Classical Model, Lorentzian Line Shape, and Homogeneous Broadening
282(3)
Natural Emission Line Width, Quantum Mechanical Model
285(1)
Doppler Broadening (Inhomogeneous)
285(2)
Lasers
287(6)
Introduction
287(1)
Population Inversion
288(1)
Stimulated Emission, Spontaneous Emission, and the Amplification Factor
289(1)
The Fabry--Perot Cavity, Losses, and Threshold Condition
290(2)
Simplified Example of a Three-Level Laser
292(1)
Confocal Cavity, Gaussian Beam, and Modes
293(16)
Paraxial Wave Equation and Beam Parameters
293(2)
Fundamental Mode in Confocal Cavity
295(3)
Diffraction Losses and Fresnel Number
298(1)
Higher Modes in the Confocal Cavity
299(10)
Optical Constants
309(22)
Introduction
309(1)
Optical Constants of Dielectrics
310(4)
The Wave Equation, Electrical Polarizability, and Refractive Index
310(1)
Oscillator Model and the Wave Equation
311(3)
Determination of Optical Constants
314(6)
Fresnel's Formulas and Reflection Coefficients
314(1)
Ratios of the Amplitude Reflection Coefficients
315(1)
Oscillator Expressions
316(2)
Sellmeier Formula
318(2)
Optical Constants of Metals
320(11)
Drude Model
320(1)
Low Frequency Region
321(1)
High Frequency Region
322(3)
Skin Depth
325(2)
Reflectance at Normal Incidence and Reflection Coefficients with Absorption
327(1)
Elliptically Polarized Light
328(1)
Analytical Expressions and Approximations for the Detemination of n and K
329(2)
Fourier Transformation and FT-Spectroscopy
331(36)
Fourier Transformation
331(13)
Introduction
331(1)
The Fourier Integrals
331(1)
Examples of Fourier Transformations Using Analytical Functions
332(1)
Numerical Fourier Transformation
333(9)
Fourier Transformation of a Product of Two Functions and the Convolution Integral
342(2)
Fourier Transform Spectroscopy
344(23)
Interferogram and Fourier Transformation. Superposition of Cosine Waves
344(1)
Michelson Interferometer and Interferograms
345(2)
The Fourier Transform Integral
347(1)
Discrete Length and Frequency Coordinates
348(3)
Folding of the Fourier Transform Spectrum
351(4)
High Resolution Spectroscopy
355(3)
Apodization
358(4)
Asymmetric Fourier Transform Spectroscopy
362(5)
Imaging Using Wave Theory
367(38)
Introduction
367(1)
Spatial Waves and Blackening Curves, Spatial Frequencies, and Fourier Transformation
368(6)
Object, Image, and the Two Fourier Transformations
374(4)
Waves from Object and Aperture Plane and Lens
374(1)
Summation Processes
375(2)
The Pair of Fourier Transformations
377(1)
Image Formation Using Incoherent Light
378(12)
Spread Function
378(1)
The Convolution Integral
379(1)
Impulse Response and the Intensity Pattern
379(1)
Examples of Convolution with Spread Function
380(4)
Transfer Function
384(3)
Resolution
387(3)
Image Formation with Coherent Light
390(5)
Spread Function
390(1)
Resolution
391(2)
Transfer Function
393(2)
Holography
395(10)
Introduction
395(1)
Recording of the Interferogram
395(1)
Recovery of Image with Same Plane Wave Used for Recording
396(1)
Recovery Using a Different Plane Wave
397(1)
Production of Real and Virtual Image Under an Angle
397(1)
Size of Hologram
398(7)
Aberration
405(20)
Introduction
405(1)
Spherical Aberration of a Single Refracting Surface
405(3)
Longitudinal and Lateral Spherical Aberration of a Thin Lens
408(3)
The π-σ Equation and Spherical Aberration
411(2)
Coma
413(2)
Aplanatic Lens
415(2)
Astigmatism
417(3)
Astigmatism of a Single Spherical Surface
417(1)
Astigmatism of a Thin Lens
418(2)
Chromatic Aberration and the Achromatic Doublet
420(2)
Chromatic Aberration and the Achromatic Doublet with Separated Lenses
422(3)
Appendix A About Graphs and Matrices in Mathcad 425(4)
Appendix B Formulas 429(4)
References 433(2)
Index 435