Preface |
|
xix | |
|
|
1 | (28) |
|
1.1 Light Rays in Human Experience |
|
|
1 | (1) |
|
|
2 | (1) |
|
|
2 | (1) |
|
|
2 | (1) |
|
|
3 | (2) |
|
|
3 | (1) |
|
1.4.2 Total Internal Reflection |
|
|
4 | (1) |
|
1.5 Fermat's Principle: The Optical Path Length |
|
|
5 | (3) |
|
1.5.1 Inhomogeneous Refractive Index |
|
|
6 | (2) |
|
|
8 | (2) |
|
|
9 | (1) |
|
1.7 Light Rays in Wave Guides |
|
|
10 | (5) |
|
1.7.1 Ray Optics in Wave Guides |
|
|
11 | (1) |
|
|
12 | (1) |
|
1.7.2.1 Numerical Aperture of an Optical Fiber |
|
|
13 | (1) |
|
1.7.2.2 Propagation Velocity |
|
|
13 | (1) |
|
1.7.3 Gradient-Index Fibers |
|
|
13 | (2) |
|
1.8 Lenses and Curved Mirrors |
|
|
15 | (2) |
|
|
15 | (1) |
|
|
16 | (1) |
|
|
17 | (6) |
|
1.9.1 Paraxial Approximation |
|
|
17 | (1) |
|
|
18 | (1) |
|
|
19 | (2) |
|
|
21 | (1) |
|
1.9.5 Periodic Lens Systems |
|
|
22 | (1) |
|
1.9.6 ABCD Matrices for Wave Guides |
|
|
23 | (1) |
|
1.10 Ray Optics and Particle Optics |
|
|
23 | (6) |
|
|
25 | (4) |
|
|
29 | (54) |
|
2.1 Electromagnetic Radiation Fields |
|
|
29 | (8) |
|
|
30 | (1) |
|
2.1.2 Polarizable and Magnetizable Media |
|
|
30 | (1) |
|
|
31 | (1) |
|
|
32 | (1) |
|
2.1.5 Maxwell's Equations for Optics |
|
|
33 | (1) |
|
2.1.6 Continuity Equation and Superposition Principle |
|
|
33 | (1) |
|
|
33 | (2) |
|
2.1.8 Energy Density, Intensity, and the Poynting Vector of Electromagnetic Waves |
|
|
35 | (2) |
|
|
37 | (3) |
|
|
37 | (1) |
|
|
38 | (1) |
|
|
39 | (1) |
|
|
40 | (10) |
|
2.3.1 The Gaussian Principal Mode or TEM00 Mode |
|
|
41 | (1) |
|
2.3.1.1 Rayleigh Zone, Confocal Parameter b |
|
|
42 | (1) |
|
2.3.1.2 Radius of Wave Fronts R(z) |
|
|
42 | (1) |
|
|
42 | (1) |
|
|
43 | (1) |
|
|
43 | (1) |
|
|
43 | (1) |
|
2.3.2 The ABCD Rule for Gaussian Modes |
|
|
44 | (2) |
|
2.3.3 Paraxial Wave Equation |
|
|
46 | (1) |
|
2.3.4 Higher Gaussian Modes |
|
|
47 | (2) |
|
2.3.5 Creation of Gaussian Modes |
|
|
49 | (1) |
|
2.3.6 More Gaussian Paraxial Beams |
|
|
50 | (1) |
|
2.4 Vector Light: Polarization |
|
|
50 | (8) |
|
|
52 | (1) |
|
|
52 | (1) |
|
2.4.3 Polarization State and Poincare Sphere |
|
|
53 | (1) |
|
2.4.4 Jones Matrices, Polarization Control, and Measurement |
|
|
54 | (2) |
|
2.4.5 Polarization and Projection |
|
|
56 | (1) |
|
2.4.6 Polarization of Light Beams with Finite Extension |
|
|
57 | (1) |
|
2.5 Optomechanics: Mechanical Action of Light Beams |
|
|
58 | (5) |
|
|
58 | (1) |
|
2.5.2 Angular Momentum of Light Beams |
|
|
59 | (1) |
|
|
60 | (1) |
|
2.5.4 Optical Angular Momentum (OAM) |
|
|
60 | (1) |
|
|
61 | (1) |
|
2.5.4.2 Laguerre-Gaussian Modes |
|
|
61 | (1) |
|
2.5.4.3 Transforming Hermite-Gaussian to Laguerre-Gaussian Beams |
|
|
62 | (1) |
|
|
63 | (4) |
|
2.6.1 Scalar Diffraction Theory |
|
|
64 | (3) |
|
2.7 Fraunhofer Diffraction |
|
|
67 | (10) |
|
2.7.1 Optical Fourier Transformation, Fourier Optics |
|
|
70 | (7) |
|
|
77 | (1) |
|
2.8.1 Babinet's Principle |
|
|
74 | (1) |
|
2.8.2 Fresnel Zones and Fresnel Lenses |
|
|
75 | (2) |
|
2.9 Beyond Gaussian Beams: Diffraction Integral and ABCD Formalism |
|
|
77 | (6) |
|
|
77 | (6) |
|
3 Light Propagation in Matter: Interfaces, Dispersion, and Birefringence |
|
|
83 | (38) |
|
3.1 Dielectric Interfaces |
|
|
83 | (6) |
|
3.1.1 Refraction and Reflection at Glass Surfaces |
|
|
84 | (1) |
|
|
84 | (2) |
|
|
86 | (1) |
|
3.1.2 Total Internal Reflection (TIR) |
|
|
87 | (1) |
|
3.1.3 Complex Refractive Index |
|
|
88 | (1) |
|
3.2 Interfaces of Conducting Materials |
|
|
89 | (5) |
|
3.2.1 Wave Propagation in Conducting Materials |
|
|
90 | (1) |
|
3.2.1.1 High Frequencies: ωpτ >> ωτ >> 1 |
|
|
90 | (1) |
|
3.2.1.2 Low Frequencies: ωτ << ωpτ << ωpτ |
|
|
90 | (1) |
|
3.2.2 Metallic Reflection |
|
|
91 | (1) |
|
3.2.3 Polaritons and Plasmons |
|
|
92 | (1) |
|
3.2.3.1 Surface Plasmon Polaritons (SPPs) |
|
|
92 | (1) |
|
3.2.3.2 Properties of Surface Plasmon Polaritons (SPPs) |
|
|
93 | (1) |
|
3.3 Light Pulses in Dispersive Materials |
|
|
94 | (9) |
|
3.3.1 Pulse Distortion by Dispersion |
|
|
98 | (3) |
|
|
101 | (2) |
|
3.4 Anisotropic Optical Materials |
|
|
103 | (667) |
|
|
103 | (3) |
|
3.4.2 Ordinary and Extraordinary Light Rays |
|
|
106 | (1) |
|
3.4.3 Construction of Retarder Plates |
|
|
107 | (1) |
|
|
108 | (1) |
|
3.4.4 Birefringent Polarizers |
|
|
109 | (1) |
|
|
110 | (1) |
|
3.5.1 Pockels Cell and Electro-optical Modulators |
|
|
110 | (2) |
|
3.5.2 Liquid Crystal Modulators |
|
|
112 | (1) |
|
3.5.3 Spatial Light Modulators |
|
|
113 | (1) |
|
3.5.4 Acousto-Optical Modulators |
|
|
114 | (3) |
|
|
117 | (1) |
|
3.5.6 Optical Isolators and Diodes |
|
|
118 | (1) |
|
|
119 | (2) |
|
4 Light Propagation in Structured Matter |
|
|
121 | (28) |
|
4.1 Optical Wave Guides and Fibers |
|
|
122 | (10) |
|
|
123 | (2) |
|
4.1.1.1 Weakly Guiding Step Fibers |
|
|
125 | (2) |
|
4.1.1.2 L = 0: TE and TM Modes |
|
|
127 | (1) |
|
4.1.1.3 L ≥ 1: HE and EH Modes |
|
|
128 | (1) |
|
|
128 | (1) |
|
|
129 | (1) |
|
|
130 | (1) |
|
4.1.4 Functional Types and Applications of Optical Fibers |
|
|
130 | (1) |
|
|
130 | (1) |
|
4.1.4.2 Single-Mode Fibers |
|
|
131 | (1) |
|
4.1.4.3 Polarization-Maintaining (PM) Fibers |
|
|
131 | (1) |
|
4.1.4.4 Photonic Crystal Fibers (PCF) |
|
|
132 | (1) |
|
4.2 Dielectric Photonic Materials |
|
|
132 | (11) |
|
|
132 | (1) |
|
4.2.1.1 Light Propagation in 1D Periodically Structured Dielectrics |
|
|
133 | (1) |
|
|
134 | (1) |
|
4.2.3 Photonic Bandgap in 1D |
|
|
135 | (2) |
|
4.2.4 Bandgaps in 2D and 3D |
|
|
137 | (1) |
|
4.2.4.1 2D Photonic Crystals |
|
|
137 | (2) |
|
4.2.4.2 3D Photonic Crystals |
|
|
139 | (1) |
|
4.2.5 Defects and Defect Modes |
|
|
139 | (2) |
|
4.2.6 Photonic Crystal Fibers (PCFs) |
|
|
141 | (2) |
|
|
143 | (6) |
|
4.3.1 Dielectric (Plasmonic) Metamaterials |
|
|
143 | (1) |
|
4.3.2 Magnetic Metamaterials and Negative Index of Refraction |
|
|
144 | (1) |
|
4.3.3 Constructing Magnetic Metamaterials |
|
|
145 | (1) |
|
4.3.4 Applications of Metamaterials: The Perfect Lens |
|
|
146 | (1) |
|
|
147 | (2) |
|
|
149 | (32) |
|
|
149 | (2) |
|
|
151 | (1) |
|
5.3 Magnifying Glass and Eyepiece |
|
|
152 | (2) |
|
|
154 | (7) |
|
5.4.1 Resolving Power of Microscopes |
|
|
155 | (1) |
|
5.4.1.1 Rayleigh Criterion and Numerical Aperture |
|
|
155 | (1) |
|
5.4.1.2 Abbe's Theory of Resolution |
|
|
156 | (1) |
|
5.4.1.3 Exploiting the Abbe-Rayleigh Resolution Limit |
|
|
157 | (2) |
|
5.4.2 Analyzing and Improving Contrast |
|
|
159 | (1) |
|
5.4.2.1 The Modulation Transfer Function (MTF) |
|
|
159 | (1) |
|
5.4.2.2 Enhancing Contrast |
|
|
160 | (1) |
|
5.5 Scanning Microscopy Methods |
|
|
161 | (5) |
|
5.5.1 Depth of Focus and Confocal Microscopy |
|
|
161 | (1) |
|
5.5.2 Scanning Near-Field Optical Microscopy (SNOM) |
|
|
162 | (1) |
|
5.5.3 Overcoming the Rayleigh-Abbe Resolution Limits with Light |
|
|
163 | (1) |
|
5.5.3.1 Single-Molecule Detection |
|
|
164 | (1) |
|
|
165 | (1) |
|
|
165 | (1) |
|
|
166 | (3) |
|
5.6.1 Theoretical Resolving Power of a Telescope |
|
|
166 | (1) |
|
5.6.2 Magnification of a Telescope |
|
|
167 | (1) |
|
5.6.3 Image Distortions of Telescopes |
|
|
168 | (1) |
|
5.6.3.1 Lens Telescopes and Reflector Telescopes |
|
|
168 | (1) |
|
5.6.3.2 Atmospheric Turbulence |
|
|
169 | (1) |
|
5.7 Lenses: Designs and Aberrations |
|
|
169 | (12) |
|
|
170 | (1) |
|
5.7.1.1 Planar Convex Lenses |
|
|
170 | (1) |
|
5.7.1.2 Biconvex Lenses and Doublets |
|
|
171 | (1) |
|
|
171 | (1) |
|
5.7.2 Aberrations: Seidel Aberrations |
|
|
172 | (1) |
|
5.7.2.1 Ray Propagation in First Order |
|
|
172 | (1) |
|
5.7.2.2 Ray Propagation in Third Order |
|
|
172 | (1) |
|
5.7.2.3 Aperture Aberration or Spherical Aberration |
|
|
173 | (1) |
|
|
174 | (1) |
|
5.7.2.5 Coma and Distortion |
|
|
175 | (1) |
|
5.7.3 Chromatic Aberration |
|
|
176 | (1) |
|
|
177 | (4) |
|
6 Coherence and Interferometry |
|
|
181 | (1) |
|
|
181 | (1) |
|
6.2 Coherence and Correlation |
|
|
182 | (1) |
|
6.2.1 Correlation Functions |
|
|
183 | (1) |
|
|
184 | (1) |
|
6.3 The Double-Slit Experiment |
|
|
185 | (6) |
|
6.3.1 Transverse Coherence |
|
|
186 | (2) |
|
6.3.2 Optical or Diffraction Gratings |
|
|
188 | (2) |
|
|
190 | (1) |
|
6.4 Michelson interferometer: longitudinal coherence |
|
|
191 | (6) |
|
6.4.1 Longitudinal or Temporal Coherence |
|
|
192 | (3) |
|
6.4.2 Mach--Zehnder and Sagnac Interferometers |
|
|
195 | (1) |
|
6.4.2.1 Mach--Zehnder Interferometer |
|
|
195 | (1) |
|
6.4.2.2 Sagnac Interferometer |
|
|
196 | (1) |
|
6.5 Fabry--Perot Interferometer |
|
|
197 | (5) |
|
6.5.1 Free Spectral Range, Finesse, and Resolution |
|
|
200 | (2) |
|
|
202 | (6) |
|
6.6.1 Damping of Optical Cavities |
|
|
202 | (1) |
|
6.6.2 Modes and Mode Matching |
|
|
203 | (1) |
|
6.6.3 Resonance Frequencies of Optical Cavities |
|
|
204 | (1) |
|
6.6.4 Symmetric Optical Cavities |
|
|
205 | (1) |
|
6.6.5 Optical Cavities: Important Special Cases |
|
|
205 | (1) |
|
6.6.5.1 Plane Parallel Cavity: L/R = 0 |
|
|
205 | (1) |
|
6.6.5.2 Confocal Cavity: L/R = 1 |
|
|
206 | (1) |
|
6.6.5.3 Concentric Cavity: L/R = 2 |
|
|
207 | (1) |
|
|
208 | (2) |
|
|
208 | (1) |
|
6.7.1.1 Minimal Reflection: AR Coating, AR Layer, and λ/4 Film |
|
|
209 | (1) |
|
6.7.1.2 Reflection: Highly Reflective Films |
|
|
209 | (1) |
|
|
209 | (1) |
|
|
210 | (4) |
|
6.8.1 Holographic Recording |
|
|
211 | (1) |
|
6.8.2 Holographic Reconstruction |
|
|
212 | (1) |
|
|
213 | (1) |
|
|
213 | (1) |
|
6.8.2.3 Reconstructed Signal Wave |
|
|
213 | (1) |
|
|
213 | (1) |
|
|
214 | (1) |
|
6.8.3.1 Three-Dimensional Reconstruction |
|
|
214 | (1) |
|
6.8.3.2 Partial Reconstruction |
|
|
214 | (1) |
|
|
214 | (1) |
|
6.9 Laser Speckle (Laser Granulation) |
|
|
214 | (5) |
|
6.9.1 Real and Virtual Speckle Patterns |
|
|
215 | (1) |
|
6.9.2 Speckle Grain Sizes |
|
|
215 | (1) |
|
|
216 | (3) |
|
|
219 | (30) |
|
7.1 Classical Radiation Interaction |
|
|
220 | (9) |
|
7.1.1 Lorentz Oscillators |
|
|
220 | (4) |
|
7.1.2 Macroscopic Polarization |
|
|
224 | (1) |
|
7.1.2.1 Linear Polarization and Macroscopic Refractive Index |
|
|
225 | (1) |
|
7.1.2.2 Absorption and Dispersion in Optically Thin Media |
|
|
226 | (1) |
|
7.1.2.3 Dense Dielectric Media and Near Fields |
|
|
227 | (2) |
|
|
229 | (10) |
|
7.2.1 Are There Any Atoms with Only Two Levels? |
|
|
229 | (1) |
|
|
230 | (2) |
|
7.2.3 Optical Bloch Equations |
|
|
232 | (2) |
|
7.2.4 Pseudo-spin, Precession, and Rabi Nutation |
|
|
234 | (1) |
|
7.2.5 Microscopic Dipoles and Ensembles |
|
|
235 | (1) |
|
7.2.6 Optical Bloch Equations with Damping |
|
|
235 | (1) |
|
7.2.7 Steady-State Inversion and Polarization |
|
|
236 | (1) |
|
7.2.7.1 Steady-State Inversion and Saturation Intensity |
|
|
236 | (2) |
|
7.2.7.2 Steady-State Polarization |
|
|
238 | (1) |
|
7.3 Stimulated and Spontaneous Radiation Processes |
|
|
239 | (3) |
|
7.3.1 Stimulated Emission and Absorption |
|
|
241 | (1) |
|
7.3.2 Spontaneous Emission |
|
|
242 | (1) |
|
7.4 Inversion and Amplification |
|
|
242 | (7) |
|
7.4.1 Four-, Three-, and Two-Level Laser Systems |
|
|
243 | (1) |
|
7.4.2 Generation of Inversion |
|
|
243 | (1) |
|
|
244 | (1) |
|
7.4.4 The Historical Path to the Laser |
|
|
245 | (1) |
|
|
246 | (3) |
|
|
249 | (36) |
|
8.1 The Classic System: The He-Ne Laser |
|
|
251 | (10) |
|
|
251 | (1) |
|
|
251 | (1) |
|
8.1.1.2 Operating Conditions |
|
|
252 | (1) |
|
8.1.1.3 The Laser Resonator |
|
|
253 | (1) |
|
8.1.2 Mode Selection in the He-Ne Laser |
|
|
254 | (1) |
|
8.1.2.1 Laser Line Selection |
|
|
254 | (1) |
|
8.1.3 Gain Profile, Laser Frequency, and Spectral Holes |
|
|
255 | (1) |
|
8.1.4 The Single-Frequency Laser |
|
|
256 | (1) |
|
|
257 | (1) |
|
8.1.6 Spectral Properties of the He-Ne Laser |
|
|
258 | (1) |
|
|
258 | (1) |
|
8.1.7 Optical Spectral Analysis |
|
|
259 | (1) |
|
8.1.7.1 The Fabry--Perot Spectrum Analyzer |
|
|
259 | (1) |
|
8.1.7.2 The Heterodyne Method |
|
|
259 | (2) |
|
8.1.8 Applications of the He-Ne Laser |
|
|
261 | (1) |
|
|
261 | (7) |
|
|
261 | (1) |
|
|
262 | (1) |
|
8.2.1.2 Operating Conditions |
|
|
262 | (1) |
|
8.2.1.3 Features and Applications |
|
|
263 | (1) |
|
|
263 | (1) |
|
8.2.3 Molecular Gas Lasers |
|
|
264 | (1) |
|
|
265 | (1) |
|
|
265 | (2) |
|
8.2.3.3 Operating Conditions |
|
|
267 | (1) |
|
8.2.3.4 The Excimer Laser |
|
|
267 | (1) |
|
8.3 The Workhorses: Solid-State Lasers |
|
|
268 | (3) |
|
8.3.1 Optical Properties of Laser Crystals |
|
|
268 | (1) |
|
|
269 | (2) |
|
8.4 Selected Solid-State Lasers |
|
|
271 | (8) |
|
8.4.1 The Neodymium Laser |
|
|
271 | (1) |
|
8.4.1.1 The Neodymium Amplifier |
|
|
271 | (1) |
|
8.4.1.2 Configuration and Operation |
|
|
272 | (1) |
|
8.4.2 Applications of Neodymium Lasers |
|
|
273 | (1) |
|
8.4.2.1 Frequency-Doubled Neodymium Lasers |
|
|
273 | (1) |
|
8.4.2.2 The Monolithically Integrated Laser (Miser) |
|
|
274 | (1) |
|
8.4.3 Erbium Lasers, Erbium-Doped Fiber Amplifiers (EDFAs) |
|
|
275 | (1) |
|
|
276 | (1) |
|
|
276 | (1) |
|
8.4.4.2 Fiber Bragg Gratings |
|
|
277 | (1) |
|
8.4.5 Ytterbium Lasers: Higher Power with Thin-Disc and Fiber Lasers |
|
|
278 | (1) |
|
8.5 Tunable Lasers with Vibronic States |
|
|
279 | (2) |
|
8.5.1 Transition-Metal Ions |
|
|
279 | (1) |
|
|
280 | (1) |
|
|
281 | (1) |
|
|
281 | (4) |
|
|
283 | (2) |
|
|
285 | (34) |
|
|
285 | (6) |
|
9.1.1 The Resonator Field |
|
|
285 | (1) |
|
9.1.2 Damping of the Resonator Field |
|
|
286 | (2) |
|
9.1.3 Steady-State Laser Operation |
|
|
288 | (1) |
|
|
289 | (1) |
|
|
289 | (1) |
|
9.1.3.3 Field Strength and Number of Photons in the Resonator |
|
|
290 | (1) |
|
|
290 | (1) |
|
9.1.3.5 Laser Power and Outcoupling |
|
|
291 | (1) |
|
|
291 | (4) |
|
9.2.1 Laser Spiking and Relaxation Oscillations |
|
|
292 | (3) |
|
9.3 Threshold-Less Lasers and Micro-lasers |
|
|
295 | (3) |
|
|
298 | (7) |
|
9.4.1 Amplitude and Phase Noise |
|
|
298 | (1) |
|
9.4.1.1 Amplitude Fluctuations |
|
|
298 | (1) |
|
9.4.1.2 Phase Fluctuations |
|
|
299 | (2) |
|
9.4.2 The Microscopic Origin of Laser Noise |
|
|
301 | (1) |
|
9.4.3 Laser Intensity Noise |
|
|
302 | (1) |
|
9.4.3.1 Quantum Limit of the Laser Amplitude |
|
|
302 | (1) |
|
9.4.3.2 Relative Intensity Noise (RIN) |
|
|
303 | (1) |
|
9.4.4 Schawlow-Townes Linewidth |
|
|
304 | (1) |
|
|
305 | (14) |
|
|
305 | (1) |
|
9.5.1.1 Technical Q-Switches |
|
|
306 | (1) |
|
|
306 | (1) |
|
|
306 | (3) |
|
9.5.3 Methods of Mode Locking |
|
|
309 | (3) |
|
9.5.4 Measurement of Short Pulses |
|
|
312 | (1) |
|
9.5.5 Tera- and Petawatt Lasers |
|
|
312 | (1) |
|
9.5.6 Coherent White Light |
|
|
313 | (2) |
|
|
315 | (1) |
|
|
316 | (3) |
|
|
319 | (34) |
|
|
319 | (3) |
|
10.1.1 Electrons and Holes |
|
|
319 | (1) |
|
10.1.2 Doped Semiconductors |
|
|
320 | (1) |
|
|
321 | (1) |
|
10.2 Optical Properties of Semiconductors |
|
|
322 | (8) |
|
10.2.1 Semiconductors for Optoelectronics |
|
|
322 | (1) |
|
10.2.2 Absorption and Emission of Light |
|
|
323 | (2) |
|
10.2.3 Inversion in the Laser Diode |
|
|
325 | (2) |
|
|
327 | (2) |
|
10.2.5 Homo- and Heterostructures |
|
|
329 | (1) |
|
10.3 The Heterostructure Laser |
|
|
330 | (9) |
|
10.3.1 Construction and Operation |
|
|
330 | (1) |
|
|
330 | (1) |
|
|
331 | (1) |
|
10.3.2 Spectral Properties |
|
|
332 | (1) |
|
10.3.2.1 Emission Wavelength and Mode Profile |
|
|
332 | (1) |
|
10.3.2.2 Electronic Wavelength Control |
|
|
333 | (1) |
|
10.3.3 Quantum Films, Quantum Wires, and Quantum Dots |
|
|
334 | (1) |
|
10.3.3.1 Inversion in the Quantum Film |
|
|
334 | (2) |
|
10.3.3.2 Multiple Quantum Well (MQW) Lasers |
|
|
336 | (1) |
|
10.3.3.3 Quantum Wires and Quantum Dots |
|
|
337 | (1) |
|
10.3.4 Quantum Cascade Lasers |
|
|
338 | (1) |
|
10.4 Dynamic Properties of Semiconductor Lasers |
|
|
339 | (6) |
|
10.4.1 Modulation Properties |
|
|
340 | (1) |
|
10.4.1.1 Amplitude Modulation |
|
|
340 | (1) |
|
10.4.1.2 Phase Modulation |
|
|
341 | (1) |
|
10.4.2 Linewidth of the Semiconductor Laser |
|
|
341 | (1) |
|
|
342 | (3) |
|
10.5 Laser Diodes, Diode Lasers, and Laser Systems |
|
|
345 | (3) |
|
10.5.1 Tunable Diode Lasers (Grating Tuned Lasers) |
|
|
345 | (1) |
|
10.5.2 DFB and DBR Lasers and VCSEL |
|
|
346 | (2) |
|
10.6 High-Power Laser Diodes |
|
|
348 | (5) |
|
|
350 | (3) |
|
|
353 | (26) |
|
11.1 Characteristics of Optical Detectors |
|
|
354 | (3) |
|
|
354 | (1) |
|
11.1.2 Quantum Efficiency |
|
|
354 | (1) |
|
11.1.3 Signal-to-Noise Ratio |
|
|
355 | (1) |
|
11.1.4 Noise Equivalent Power (NEP) |
|
|
356 | (1) |
|
11.1.5 Detectivity "D-Star" |
|
|
356 | (1) |
|
|
356 | (1) |
|
11.1.7 Linearity and Dynamic Range |
|
|
357 | (1) |
|
11.2 Fluctuating Optoelectronic Quantities |
|
|
357 | (2) |
|
11.2.1 Dark Current Noise |
|
|
357 | (1) |
|
11.2.2 Intrinsic Amplifier Noise |
|
|
358 | (1) |
|
11.2.3 Measuring Amplifier Noise |
|
|
358 | (1) |
|
11.3 Photon Noise and Detectivity Limits |
|
|
359 | (5) |
|
11.3.1 Photon Statistics of Coherent Light Fields |
|
|
360 | (1) |
|
11.3.2 Photon Statistics in Thermal Light Fields |
|
|
361 | (2) |
|
11.3.3 Shot Noise Limit and "Square-Law" Detectors |
|
|
363 | (1) |
|
|
364 | (2) |
|
|
365 | (1) |
|
|
366 | (1) |
|
11.4.3 Pyroelectric Detectors |
|
|
366 | (1) |
|
|
366 | (1) |
|
11.5 Quantum Sensors I: Photomultiplier Tubes |
|
|
366 | (4) |
|
11.5.1 The Photoelectric Effect |
|
|
366 | (1) |
|
|
367 | (1) |
|
|
368 | (1) |
|
11.5.2.2 Counting Mode and Current Mode |
|
|
368 | (1) |
|
11.5.2.3 Noise Properties of PMTs |
|
|
369 | (1) |
|
11.5.2.4 MicroChannel Plates and Channeltrons |
|
|
370 | (1) |
|
11.6 Quantum Sensors II: Semiconductor Sensors |
|
|
370 | (4) |
|
|
370 | (1) |
|
|
371 | (1) |
|
11.6.1.2 Noise Properties |
|
|
372 | (1) |
|
11.6.2 Photodiodes or Photovoltaic Detectors |
|
|
372 | (1) |
|
11.6.2.1 pn and Pin Diodes |
|
|
373 | (1) |
|
|
373 | (1) |
|
11.6.3 Avalanche Photodiodes |
|
|
374 | (1) |
|
11.7 Position and Image Sensors |
|
|
374 | (5) |
|
|
375 | (1) |
|
|
375 | (2) |
|
|
377 | (1) |
|
|
377 | (2) |
|
12 Laser Spectroscopy and Laser Cooling |
|
|
379 | (28) |
|
12.1 Laser-Induced Fluorescence (LIF) |
|
|
379 | (1) |
|
12.2 Absorption and Dispersion |
|
|
380 | (2) |
|
12.2.1 Saturated Absorption |
|
|
381 | (1) |
|
12.3 The Width of Spectral Lines |
|
|
382 | (6) |
|
12.3.1 Natural Width and Homogeneous Linewidth |
|
|
383 | (1) |
|
12.3.2 Doppler Broadening and Inhomogeneous Linewidth |
|
|
383 | (2) |
|
12.3.3 Pressure Broadening |
|
|
385 | (1) |
|
12.3.4 Time-of-Flight (TOF) Broadening |
|
|
386 | (2) |
|
12.4 Doppler-Free Spectroscopy |
|
|
388 | (6) |
|
12.4.1 Spectroscopy with Molecular Beams |
|
|
388 | (1) |
|
12.4.2 Saturation Spectroscopy |
|
|
388 | |
|
12.4.3 Two-Photon Spectroscopy |
|
|
391 | |
|
|
394 | (13) |
|
12.5.1 Radiation Pressure in a Propagating Wave |
|
|
395 | (2) |
|
|
397 | (2) |
|
12.5.3 Heating Forces, Doppler Limit |
|
|
399 | (8) |
|
12.5.4 Dipole Forces in a Standing Wave |
|
|
401 | |
|
|
403 | (1) |
|
|
403 | (1) |
|
|
404 | (3) |
|
13 Coherent Light-Matter Interaction |
|
|
407 | (10) |
|
13.1 Weak Coupling and Strong Coupling |
|
|
407 | (63) |
|
13.1.1 AC Stark Effect and Dressed-Atom Model |
|
|
408 | (62) |
|
|
410 | |
|
|
411 | (1) |
|
13.2.2 Free Induction Decay |
|
|
411 | |
|
|
413 | |
|
|
414 | (1) |
|
|
415 | (2) |
|
14 Photons: An Introduction to Quantum Optics |
|
|
417 | (40) |
|
14.1 Does Light Exhibit Quantum Character? |
|
|
417 | (1) |
|
14.2 Quantization of the Electromagnetic Field |
|
|
418 | (3) |
|
14.3 Spontaneous Emission |
|
|
421 | (6) |
|
14.3.1 Vacuum Fluctuations Perturb Excited Atoms |
|
|
422 | (1) |
|
14.3.2 Weisskopf and Wigner Theory of Spontaneous Emission |
|
|
423 | (2) |
|
14.3.3 Suppression of Spontaneous Emission |
|
|
425 | (1) |
|
14.3.4 Interpretation of Spontaneous Emission |
|
|
426 | (1) |
|
14.3.5 Open Quantum Systems and Reservoirs |
|
|
426 | (1) |
|
14.4 Resonance Fluorescence |
|
|
427 | (8) |
|
14.4.1 The Spectrum of Resonance Fluorescence |
|
|
427 | (1) |
|
14.4.2 Spectra and Correlation Functions |
|
|
428 | (3) |
|
14.4.3 Spectra and Quantum Fluctuations |
|
|
431 | (1) |
|
14.4.4 Coherent and Incoherent Contributions of Resonance Fluorescence |
|
|
432 | (1) |
|
14.4.4.1 The Mollow Triplet |
|
|
433 | (2) |
|
14.5 Light Fields in Quantum Optics |
|
|
435 | (9) |
|
14.5.1 Fluctuating Light Fields |
|
|
435 | (1) |
|
14.5.1.1 First-Order Coherence |
|
|
435 | (1) |
|
14.5.1.2 Second-Order Coherence |
|
|
436 | (1) |
|
14.5.1.3 Hanbury Brown and Twiss Experiment |
|
|
437 | (1) |
|
14.5.2 Quantum Properties of Important Light Fields |
|
|
438 | (1) |
|
14.5.2.1 Fock States or Number States |
|
|
439 | (1) |
|
14.5.2.2 Coherent Light Fields and Laser Light |
|
|
439 | (2) |
|
14.5.2.3 Thermal Light Fields |
|
|
441 | (1) |
|
14.5.3 Photon Number Distribution |
|
|
441 | (2) |
|
14.5.4 Bunching and Anti-bunching |
|
|
443 | (1) |
|
|
443 | (1) |
|
|
443 | (1) |
|
|
444 | (4) |
|
14.6.1 Spontaneous Parametric Fluorescence, SPDC Sources |
|
|
445 | (1) |
|
14.6.2 Hong-Ou-Mandel Interferometer |
|
|
446 | (2) |
|
|
448 | (9) |
|
14.7.1 Entangled States According to Einstein-Podolsky-Rosen |
|
|
448 | (1) |
|
14.7.1.1 The Einstein-Podolsky-Rosen (EPR) Paradox |
|
|
448 | (2) |
|
|
450 | (1) |
|
14.7.3 Bell's Inequality and Quantum Optics |
|
|
451 | (1) |
|
14.7.4 Polarization-Entangled Photon Pairs |
|
|
452 | (1) |
|
14.7.5 A Simple Bell Experiment |
|
|
453 | (2) |
|
|
455 | (2) |
|
15 Nonlinear Optics I: Optical Mixing Processes |
|
|
457 | (28) |
|
15.1 Charged Anharmonic Oscillators |
|
|
457 | (2) |
|
15.2 Second-Order Nonlinear Susceptibility |
|
|
459 | (5) |
|
15.2.1 Mixing Optical Fields: Three-Wave Mixing |
|
|
459 | (2) |
|
15.2.2 Symmetry Properties of Susceptibility |
|
|
461 | (1) |
|
15.2.2.1 Intrinsic Permutation Symmetry |
|
|
461 | (1) |
|
15.2.2.2 Real Electromagnetic Fields |
|
|
461 | (1) |
|
|
461 | (1) |
|
15.2.3 Two-Wave Polarization |
|
|
462 | (1) |
|
15.2.3.1 Contracted Notation |
|
|
462 | (1) |
|
15.2.3.2 Kleinman Symmetry |
|
|
462 | (1) |
|
|
463 | (1) |
|
15.2.5 Effective Value of the Nonlinear d Coefficient |
|
|
463 | (1) |
|
15.3 Wave Propagation in Nonlinear Media |
|
|
464 | (2) |
|
15.3.1 Coupled Amplitude Equations |
|
|
464 | (1) |
|
15.3.2 Coupled Amplitudes for Three-Wave Mixing |
|
|
465 | (1) |
|
15.3.3 Energy Conservation |
|
|
466 | (1) |
|
|
466 | (11) |
|
|
467 | (1) |
|
|
468 | (1) |
|
15.4.3 Phase Matching in Nonlinear and Birefringent Crystals |
|
|
469 | (2) |
|
15.4.3.1 Angle or Critical Phase Matching |
|
|
471 | (1) |
|
15.4.3.2 Noncritical or 90° Phase Matching |
|
|
471 | (1) |
|
15.4.4 Frequency Doubling with Gaussian Beams |
|
|
472 | (2) |
|
15.4.5 Resonant Frequency Doubling |
|
|
474 | (1) |
|
15.4.5.1 Passive Resonators |
|
|
474 | (2) |
|
15.4.6 Quasi-phase Matching |
|
|
476 | (1) |
|
15.5 Sum and Difference Frequency |
|
|
477 | (2) |
|
|
477 | (1) |
|
15.5.2 Difference Frequency and Parametric Gain |
|
|
478 | (1) |
|
15.6 Optical Parametric Oscillators |
|
|
479 | (6) |
|
|
482 | (3) |
|
16 Nonlinear Optics II: Four-Wave Mixing |
|
|
485 | (12) |
|
16.1 Frequency Tripling in Gases |
|
|
485 | (2) |
|
16.2 Nonlinear Refraction Coefficient (Optical Kerr Effect) |
|
|
487 | (7) |
|
|
488 | (1) |
|
16.2.1.1 Kerr Lens Mode Locking |
|
|
489 | (1) |
|
16.2.1.2 Spatial Solitons |
|
|
490 | (1) |
|
16.2.1.3 Nonlinear Optical Devices |
|
|
491 | (1) |
|
|
491 | (3) |
|
16.3 Self-Phase Modulation |
|
|
494 | (3) |
|
|
495 | (2) |
|
|
497 | (6) |
|
A.1 Spectral Analysis of Fluctuating Measurable Quantities |
|
|
497 | (5) |
|
|
500 | (1) |
|
|
501 | |
|
A.2 Time Averaging Formula |
|
|
502 | (1) |
|
B Supplements in Quantum Mechanics |
|
|
503 | (4) |
|
B.1 Temporal Evolution of a Two-State System |
|
|
503 | (1) |
|
|
503 | (1) |
|
B.1.2 Temporal Development of Pure States |
|
|
503 | (1) |
|
B.2 Density Matrix Formalism |
|
|
504 | (1) |
|
|
505 | (2) |
Bibliography |
|
507 | (12) |
Index |
|
519 | |