Atjaunināt sīkdatņu piekrišanu

Optics, Light and Lasers: The Practical Approach to Modern Aspects of Photonics and Laser Physics 3rd edition [Mīkstie vāki]

(University of Bonn, Germany)
  • Formāts: Paperback / softback, 552 pages, height x width x depth: 244x170x28 mm, weight: 1247 g
  • Izdošanas datums: 05-Apr-2017
  • Izdevniecība: Blackwell Verlag GmbH
  • ISBN-10: 3527413316
  • ISBN-13: 9783527413317
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 110,64 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 552 pages, height x width x depth: 244x170x28 mm, weight: 1247 g
  • Izdošanas datums: 05-Apr-2017
  • Izdevniecība: Blackwell Verlag GmbH
  • ISBN-10: 3527413316
  • ISBN-13: 9783527413317
Citas grāmatas par šo tēmu:
This new, updated and enlarged edition of the successful and exceptionally well-structured textbook features new chapters on such hot topics as nanooptics and plasmonics, femtocombs, and quantum cascade lasers. It provides comprehensive and coherent coverage of fundamental optics, laser physics, and important modern applications, while equally including some traditional aspects for the first time, such as the Collins integral, aspheric lenses, remote/trace gas sensing. There are now also more problems with solutions, which reflect the addition of the new topics.
Written for newcomers to the topic who will benefit from the author's ability to explain difficult theories and effects in a straightforward and readily comprehensible way.
Preface xix
1 Light Rays
1(28)
1.1 Light Rays in Human Experience
1(1)
1.2 Ray Optics
2(1)
1.3 Reflection
2(1)
1.3.1 Planar Mirrors
2(1)
1.4 Refraction
3(2)
1.4.1 Law of Refraction
3(1)
1.4.2 Total Internal Reflection
4(1)
1.5 Fermat's Principle: The Optical Path Length
5(3)
1.5.1 Inhomogeneous Refractive Index
6(2)
1.6 Prisms
8(2)
1.6.1 Dispersion
9(1)
1.7 Light Rays in Wave Guides
10(5)
1.7.1 Ray Optics in Wave Guides
11(1)
1.7.2 Step-Index Fibers
12(1)
1.7.2.1 Numerical Aperture of an Optical Fiber
13(1)
1.7.2.2 Propagation Velocity
13(1)
1.7.3 Gradient-Index Fibers
13(2)
1.8 Lenses and Curved Mirrors
15(2)
1.8.1 Lenses
15(1)
1.8.2 Concave Mirrors
16(1)
1.9 Matrix Optics
17(6)
1.9.1 Paraxial Approximation
17(1)
1.9.2 ABCD Matrices
18(1)
1.9.3 Lenses in Air
19(2)
1.9.4 Lens Systems
21(1)
1.9.5 Periodic Lens Systems
22(1)
1.9.6 ABCD Matrices for Wave Guides
23(1)
1.10 Ray Optics and Particle Optics
23(6)
Problems
25(4)
2 Wave Optics
29(54)
2.1 Electromagnetic Radiation Fields
29(8)
2.1.1 Static Fields
30(1)
2.1.2 Polarizable and Magnetizable Media
30(1)
2.1.3 Dynamic Fields
31(1)
2.1.4 Fourier Components
32(1)
2.1.5 Maxwell's Equations for Optics
33(1)
2.1.6 Continuity Equation and Superposition Principle
33(1)
2.1.7 The Wave Equation
33(2)
2.1.8 Energy Density, Intensity, and the Poynting Vector of Electromagnetic Waves
35(2)
2.2 Wave Types
37(3)
2.2.1 Planar Waves
37(1)
2.2.2 Spherical Waves
38(1)
2.2.3 Dipole Waves
39(1)
2.3 Gaussian Beams
40(10)
2.3.1 The Gaussian Principal Mode or TEM00 Mode
41(1)
2.3.1.1 Rayleigh Zone, Confocal Parameter b
42(1)
2.3.1.2 Radius of Wave Fronts R(z)
42(1)
2.3.1.3 Beam Waist 2w0
42(1)
2.3.1.4 Beam Radius w(z)
43(1)
2.3.1.5 Divergence div
43(1)
2.3.1.6 Gouy Phase n(z)
43(1)
2.3.2 The ABCD Rule for Gaussian Modes
44(2)
2.3.3 Paraxial Wave Equation
46(1)
2.3.4 Higher Gaussian Modes
47(2)
2.3.5 Creation of Gaussian Modes
49(1)
2.3.6 More Gaussian Paraxial Beams
50(1)
2.4 Vector Light: Polarization
50(8)
2.4.1 Jones Vectors
52(1)
2.4.2 Stokes Parameters
52(1)
2.4.3 Polarization State and Poincare Sphere
53(1)
2.4.4 Jones Matrices, Polarization Control, and Measurement
54(2)
2.4.5 Polarization and Projection
56(1)
2.4.6 Polarization of Light Beams with Finite Extension
57(1)
2.5 Optomechanics: Mechanical Action of Light Beams
58(5)
2.5.1 Radiation Pressure
58(1)
2.5.2 Angular Momentum of Light Beams
59(1)
2.5.3 Beth's Experiment
60(1)
2.5.4 Optical Angular Momentum (OAM)
60(1)
2.5.4.1 Twisted Beams
61(1)
2.5.4.2 Laguerre-Gaussian Modes
61(1)
2.5.4.3 Transforming Hermite-Gaussian to Laguerre-Gaussian Beams
62(1)
2.6 Diffraction
63(4)
2.6.1 Scalar Diffraction Theory
64(3)
2.7 Fraunhofer Diffraction
67(10)
2.7.1 Optical Fourier Transformation, Fourier Optics
70(7)
2.8 Fresnel Diffraction
77(1)
2.8.1 Babinet's Principle
74(1)
2.8.2 Fresnel Zones and Fresnel Lenses
75(2)
2.9 Beyond Gaussian Beams: Diffraction Integral and ABCD Formalism
77(6)
Problems
77(6)
3 Light Propagation in Matter: Interfaces, Dispersion, and Birefringence
83(38)
3.1 Dielectric Interfaces
83(6)
3.1.1 Refraction and Reflection at Glass Surfaces
84(1)
3.1.1.1 s Polarization
84(2)
3.1.1.2 p Polarization
86(1)
3.1.2 Total Internal Reflection (TIR)
87(1)
3.1.3 Complex Refractive Index
88(1)
3.2 Interfaces of Conducting Materials
89(5)
3.2.1 Wave Propagation in Conducting Materials
90(1)
3.2.1.1 High Frequencies: ωpτ >> ωτ >> 1
90(1)
3.2.1.2 Low Frequencies: ωτ << ωpτ << ωpτ
90(1)
3.2.2 Metallic Reflection
91(1)
3.2.3 Polaritons and Plasmons
92(1)
3.2.3.1 Surface Plasmon Polaritons (SPPs)
92(1)
3.2.3.2 Properties of Surface Plasmon Polaritons (SPPs)
93(1)
3.3 Light Pulses in Dispersive Materials
94(9)
3.3.1 Pulse Distortion by Dispersion
98(3)
3.3.2 Solitons
101(2)
3.4 Anisotropic Optical Materials
103(667)
3.4.1 Birefringence
103(3)
3.4.2 Ordinary and Extraordinary Light Rays
106(1)
3.4.3 Construction of Retarder Plates
107(1)
3.4.3.1 Lyot Filter
108(1)
3.4.4 Birefringent Polarizers
109(1)
3.5 Optical Modulators
110(1)
3.5.1 Pockels Cell and Electro-optical Modulators
110(2)
3.5.2 Liquid Crystal Modulators
112(1)
3.5.3 Spatial Light Modulators
113(1)
3.5.4 Acousto-Optical Modulators
114(3)
3.5.5 Faraday Rotators
117(1)
3.5.6 Optical Isolators and Diodes
118(1)
Problems
119(2)
4 Light Propagation in Structured Matter
121(28)
4.1 Optical Wave Guides and Fibers
122(10)
4.1.1 Step-Index Fibers
123(2)
4.1.1.1 Weakly Guiding Step Fibers
125(2)
4.1.1.2 L = 0: TE and TM Modes
127(1)
4.1.1.3 L ≥ 1: HE and EH Modes
128(1)
4.1.1.4 L ≥ LP Modes
128(1)
4.1.2 Graded-Index Fiber
129(1)
4.1.3 Fiber Absorption
130(1)
4.1.4 Functional Types and Applications of Optical Fibers
130(1)
4.1.4.1 Multimode Fibers
130(1)
4.1.4.2 Single-Mode Fibers
131(1)
4.1.4.3 Polarization-Maintaining (PM) Fibers
131(1)
4.1.4.4 Photonic Crystal Fibers (PCF)
132(1)
4.2 Dielectric Photonic Materials
132(11)
4.2.1 Photonic Crystals
132(1)
4.2.1.1 Light Propagation in 1D Periodically Structured Dielectrics
133(1)
4.2.2 Bloch Waves
134(1)
4.2.3 Photonic Bandgap in 1D
135(2)
4.2.4 Bandgaps in 2D and 3D
137(1)
4.2.4.1 2D Photonic Crystals
137(2)
4.2.4.2 3D Photonic Crystals
139(1)
4.2.5 Defects and Defect Modes
139(2)
4.2.6 Photonic Crystal Fibers (PCFs)
141(2)
4.3 Metamaterials
143(6)
4.3.1 Dielectric (Plasmonic) Metamaterials
143(1)
4.3.2 Magnetic Metamaterials and Negative Index of Refraction
144(1)
4.3.3 Constructing Magnetic Metamaterials
145(1)
4.3.4 Applications of Metamaterials: The Perfect Lens
146(1)
Problems
147(2)
5 Optical Images
149(32)
5.1 Simple Lenses
149(2)
5.2 The Human Eye
151(1)
5.3 Magnifying Glass and Eyepiece
152(2)
5.4 Microscopes
154(7)
5.4.1 Resolving Power of Microscopes
155(1)
5.4.1.1 Rayleigh Criterion and Numerical Aperture
155(1)
5.4.1.2 Abbe's Theory of Resolution
156(1)
5.4.1.3 Exploiting the Abbe-Rayleigh Resolution Limit
157(2)
5.4.2 Analyzing and Improving Contrast
159(1)
5.4.2.1 The Modulation Transfer Function (MTF)
159(1)
5.4.2.2 Enhancing Contrast
160(1)
5.5 Scanning Microscopy Methods
161(5)
5.5.1 Depth of Focus and Confocal Microscopy
161(1)
5.5.2 Scanning Near-Field Optical Microscopy (SNOM)
162(1)
5.5.3 Overcoming the Rayleigh-Abbe Resolution Limits with Light
163(1)
5.5.3.1 Single-Molecule Detection
164(1)
5.5.3.2 PALM Microscopy
165(1)
5.5.3.3 STED Microscopy
165(1)
5.6 Telescopes
166(3)
5.6.1 Theoretical Resolving Power of a Telescope
166(1)
5.6.2 Magnification of a Telescope
167(1)
5.6.3 Image Distortions of Telescopes
168(1)
5.6.3.1 Lens Telescopes and Reflector Telescopes
168(1)
5.6.3.2 Atmospheric Turbulence
169(1)
5.7 Lenses: Designs and Aberrations
169(12)
5.7.1 Types of Lenses
170(1)
5.7.1.1 Planar Convex Lenses
170(1)
5.7.1.2 Biconvex Lenses and Doublets
171(1)
5.7.1.3 Meniscus Lenses
171(1)
5.7.2 Aberrations: Seidel Aberrations
172(1)
5.7.2.1 Ray Propagation in First Order
172(1)
5.7.2.2 Ray Propagation in Third Order
172(1)
5.7.2.3 Aperture Aberration or Spherical Aberration
173(1)
5.7.2 A Astigmatism
174(1)
5.7.2.5 Coma and Distortion
175(1)
5.7.3 Chromatic Aberration
176(1)
Problems
177(4)
6 Coherence and Interferometry
181(1)
6.1 Young's Double Slit
181(1)
6.2 Coherence and Correlation
182(1)
6.2.1 Correlation Functions
183(1)
6.2.2 Beam Splitter
184(1)
6.3 The Double-Slit Experiment
185(6)
6.3.1 Transverse Coherence
186(2)
6.3.2 Optical or Diffraction Gratings
188(2)
6.3.3 Monochromators
190(1)
6.4 Michelson interferometer: longitudinal coherence
191(6)
6.4.1 Longitudinal or Temporal Coherence
192(3)
6.4.2 Mach--Zehnder and Sagnac Interferometers
195(1)
6.4.2.1 Mach--Zehnder Interferometer
195(1)
6.4.2.2 Sagnac Interferometer
196(1)
6.5 Fabry--Perot Interferometer
197(5)
6.5.1 Free Spectral Range, Finesse, and Resolution
200(2)
6.6 Optical Cavities
202(6)
6.6.1 Damping of Optical Cavities
202(1)
6.6.2 Modes and Mode Matching
203(1)
6.6.3 Resonance Frequencies of Optical Cavities
204(1)
6.6.4 Symmetric Optical Cavities
205(1)
6.6.5 Optical Cavities: Important Special Cases
205(1)
6.6.5.1 Plane Parallel Cavity: L/R = 0
205(1)
6.6.5.2 Confocal Cavity: L/R = 1
206(1)
6.6.5.3 Concentric Cavity: L/R = 2
207(1)
6.7 Thin Optical Films
208(2)
6.7.1 Single-Layer Films
208(1)
6.7.1.1 Minimal Reflection: AR Coating, AR Layer, and λ/4 Film
209(1)
6.7.1.2 Reflection: Highly Reflective Films
209(1)
6.7.2 Multilayer Films
209(1)
6.8 Holography
210(4)
6.8.1 Holographic Recording
211(1)
6.8.2 Holographic Reconstruction
212(1)
6.8.2.1 Zeroth Order
213(1)
6.8.2.2 Halo
213(1)
6.8.2.3 Reconstructed Signal Wave
213(1)
6.8.2.4 Conjugated Wave
213(1)
6.8.3 Properties
214(1)
6.8.3.1 Three-Dimensional Reconstruction
214(1)
6.8.3.2 Partial Reconstruction
214(1)
6.8.3.3 Magnification
214(1)
6.9 Laser Speckle (Laser Granulation)
214(5)
6.9.1 Real and Virtual Speckle Patterns
215(1)
6.9.2 Speckle Grain Sizes
215(1)
Problems
216(3)
7 Light and Matter
219(30)
7.1 Classical Radiation Interaction
220(9)
7.1.1 Lorentz Oscillators
220(4)
7.1.2 Macroscopic Polarization
224(1)
7.1.2.1 Linear Polarization and Macroscopic Refractive Index
225(1)
7.1.2.2 Absorption and Dispersion in Optically Thin Media
226(1)
7.1.2.3 Dense Dielectric Media and Near Fields
227(2)
7.2 Two-Level Atoms
229(10)
7.2.1 Are There Any Atoms with Only Two Levels?
229(1)
7.2.2 Dipole Interaction
230(2)
7.2.3 Optical Bloch Equations
232(2)
7.2.4 Pseudo-spin, Precession, and Rabi Nutation
234(1)
7.2.5 Microscopic Dipoles and Ensembles
235(1)
7.2.6 Optical Bloch Equations with Damping
235(1)
7.2.7 Steady-State Inversion and Polarization
236(1)
7.2.7.1 Steady-State Inversion and Saturation Intensity
236(2)
7.2.7.2 Steady-State Polarization
238(1)
7.3 Stimulated and Spontaneous Radiation Processes
239(3)
7.3.1 Stimulated Emission and Absorption
241(1)
7.3.2 Spontaneous Emission
242(1)
7.4 Inversion and Amplification
242(7)
7.4.1 Four-, Three-, and Two-Level Laser Systems
243(1)
7.4.2 Generation of Inversion
243(1)
7.4.3 Optical Gain
244(1)
7.4.4 The Historical Path to the Laser
245(1)
Problems
246(3)
8 The Laser
249(36)
8.1 The Classic System: The He-Ne Laser
251(10)
8.1.1 Construction
251(1)
8.1.1.1 Amplifier
251(1)
8.1.1.2 Operating Conditions
252(1)
8.1.1.3 The Laser Resonator
253(1)
8.1.2 Mode Selection in the He-Ne Laser
254(1)
8.1.2.1 Laser Line Selection
254(1)
8.1.3 Gain Profile, Laser Frequency, and Spectral Holes
255(1)
8.1.4 The Single-Frequency Laser
256(1)
8.1.5 Laser Power
257(1)
8.1.6 Spectral Properties of the He-Ne Laser
258(1)
8.1.6.1 Laser Linewidth
258(1)
8.1.7 Optical Spectral Analysis
259(1)
8.1.7.1 The Fabry--Perot Spectrum Analyzer
259(1)
8.1.7.2 The Heterodyne Method
259(2)
8.1.8 Applications of the He-Ne Laser
261(1)
8.2 Other Gas Lasers
261(7)
8.2.1 The Argon Laser
261(1)
8.2.1.1 The Amplifier
262(1)
8.2.1.2 Operating Conditions
262(1)
8.2.1.3 Features and Applications
263(1)
8.2.2 Metal-Vapor Lasers
263(1)
8.2.3 Molecular Gas Lasers
264(1)
8.2.3.1 The CO2 Laser
265(1)
8.2.3.2 Gain
265(2)
8.2.3.3 Operating Conditions
267(1)
8.2.3.4 The Excimer Laser
267(1)
8.3 The Workhorses: Solid-State Lasers
268(3)
8.3.1 Optical Properties of Laser Crystals
268(1)
8.3.2 Rare-Earth Ions
269(2)
8.4 Selected Solid-State Lasers
271(8)
8.4.1 The Neodymium Laser
271(1)
8.4.1.1 The Neodymium Amplifier
271(1)
8.4.1.2 Configuration and Operation
272(1)
8.4.2 Applications of Neodymium Lasers
273(1)
8.4.2.1 Frequency-Doubled Neodymium Lasers
273(1)
8.4.2.2 The Monolithically Integrated Laser (Miser)
274(1)
8.4.3 Erbium Lasers, Erbium-Doped Fiber Amplifiers (EDFAs)
275(1)
8.4.4 Fiber Lasers
276(1)
8.4.4.1 Cladding Pumping
276(1)
8.4.4.2 Fiber Bragg Gratings
277(1)
8.4.5 Ytterbium Lasers: Higher Power with Thin-Disc and Fiber Lasers
278(1)
8.5 Tunable Lasers with Vibronic States
279(2)
8.5.1 Transition-Metal Ions
279(1)
8.5.2 Color Centers
280(1)
8.5.3 Dyes
281(1)
8.6 Tunable Ring Lasers
281(4)
Problems
283(2)
9 Laser Dynamics
285(34)
9.1 Basic Laser Theory
285(6)
9.1.1 The Resonator Field
285(1)
9.1.2 Damping of the Resonator Field
286(2)
9.1.3 Steady-State Laser Operation
288(1)
9.1.3.1 Saturated Gain
289(1)
9.1.3.2 Mode Pulling
289(1)
9.1.3.3 Field Strength and Number of Photons in the Resonator
290(1)
9.1.3 A Laser Threshold
290(1)
9.1.3.5 Laser Power and Outcoupling
291(1)
9.2 Laser Rate Equations
291(4)
9.2.1 Laser Spiking and Relaxation Oscillations
292(3)
9.3 Threshold-Less Lasers and Micro-lasers
295(3)
9.4 Laser Noise
298(7)
9.4.1 Amplitude and Phase Noise
298(1)
9.4.1.1 Amplitude Fluctuations
298(1)
9.4.1.2 Phase Fluctuations
299(2)
9.4.2 The Microscopic Origin of Laser Noise
301(1)
9.4.3 Laser Intensity Noise
302(1)
9.4.3.1 Quantum Limit of the Laser Amplitude
302(1)
9.4.3.2 Relative Intensity Noise (RIN)
303(1)
9.4.4 Schawlow-Townes Linewidth
304(1)
9.5 Pulsed Lasers
305(14)
9.5.1 "Q-Switch"
305(1)
9.5.1.1 Technical Q-Switches
306(1)
9.5.1.2 Cavity Dumping
306(1)
9.5.2 Mode Locking
306(3)
9.5.3 Methods of Mode Locking
309(3)
9.5.4 Measurement of Short Pulses
312(1)
9.5.5 Tera- and Petawatt Lasers
312(1)
9.5.6 Coherent White Light
313(2)
9.5.7 Frequency Combs
315(1)
Problems
316(3)
10 Semiconductor Lasers
319(34)
10.1 Semiconductors
319(3)
10.1.1 Electrons and Holes
319(1)
10.1.2 Doped Semiconductors
320(1)
10.1.3 pn Junctions
321(1)
10.2 Optical Properties of Semiconductors
322(8)
10.2.1 Semiconductors for Optoelectronics
322(1)
10.2.2 Absorption and Emission of Light
323(2)
10.2.3 Inversion in the Laser Diode
325(2)
10.2.4 Small Signal Gain
327(2)
10.2.5 Homo- and Heterostructures
329(1)
10.3 The Heterostructure Laser
330(9)
10.3.1 Construction and Operation
330(1)
10.3.1.1 Laser Crystal
330(1)
10.3.1.2 Laser Operation
331(1)
10.3.2 Spectral Properties
332(1)
10.3.2.1 Emission Wavelength and Mode Profile
332(1)
10.3.2.2 Electronic Wavelength Control
333(1)
10.3.3 Quantum Films, Quantum Wires, and Quantum Dots
334(1)
10.3.3.1 Inversion in the Quantum Film
334(2)
10.3.3.2 Multiple Quantum Well (MQW) Lasers
336(1)
10.3.3.3 Quantum Wires and Quantum Dots
337(1)
10.3.4 Quantum Cascade Lasers
338(1)
10.4 Dynamic Properties of Semiconductor Lasers
339(6)
10.4.1 Modulation Properties
340(1)
10.4.1.1 Amplitude Modulation
340(1)
10.4.1.2 Phase Modulation
341(1)
10.4.2 Linewidth of the Semiconductor Laser
341(1)
10.4.3 Injection Locking
342(3)
10.5 Laser Diodes, Diode Lasers, and Laser Systems
345(3)
10.5.1 Tunable Diode Lasers (Grating Tuned Lasers)
345(1)
10.5.2 DFB and DBR Lasers and VCSEL
346(2)
10.6 High-Power Laser Diodes
348(5)
Problems
350(3)
11 Sensors for Light
353(26)
11.1 Characteristics of Optical Detectors
354(3)
11.1.1 Sensitivity
354(1)
11.1.2 Quantum Efficiency
354(1)
11.1.3 Signal-to-Noise Ratio
355(1)
11.1.4 Noise Equivalent Power (NEP)
356(1)
11.1.5 Detectivity "D-Star"
356(1)
11.1.6 Rise Time
356(1)
11.1.7 Linearity and Dynamic Range
357(1)
11.2 Fluctuating Optoelectronic Quantities
357(2)
11.2.1 Dark Current Noise
357(1)
11.2.2 Intrinsic Amplifier Noise
358(1)
11.2.3 Measuring Amplifier Noise
358(1)
11.3 Photon Noise and Detectivity Limits
359(5)
11.3.1 Photon Statistics of Coherent Light Fields
360(1)
11.3.2 Photon Statistics in Thermal Light Fields
361(2)
11.3.3 Shot Noise Limit and "Square-Law" Detectors
363(1)
11.4 Thermal Detectors
364(2)
11.4.1 Thermopiles
365(1)
11.4.2 Bolometers
366(1)
11.4.3 Pyroelectric Detectors
366(1)
11.4.4 The Golay Cell
366(1)
11.5 Quantum Sensors I: Photomultiplier Tubes
366(4)
11.5.1 The Photoelectric Effect
366(1)
11.5.2 Photocathodes
367(1)
11.5.2.1 Amplification
368(1)
11.5.2.2 Counting Mode and Current Mode
368(1)
11.5.2.3 Noise Properties of PMTs
369(1)
11.5.2.4 MicroChannel Plates and Channeltrons
370(1)
11.6 Quantum Sensors II: Semiconductor Sensors
370(4)
11.6.1 Photoconductors
370(1)
11.6.1.1 Sensitivity
371(1)
11.6.1.2 Noise Properties
372(1)
11.6.2 Photodiodes or Photovoltaic Detectors
372(1)
11.6.2.1 pn and Pin Diodes
373(1)
11.6.2.2 Operating Modes
373(1)
11.6.3 Avalanche Photodiodes
374(1)
11.7 Position and Image Sensors
374(5)
11.7.1 Photo-Capacitors
375(1)
11.7.2 CCD Sensors
375(2)
11.7.3 Image Intensifies
377(1)
Problems
377(2)
12 Laser Spectroscopy and Laser Cooling
379(28)
12.1 Laser-Induced Fluorescence (LIF)
379(1)
12.2 Absorption and Dispersion
380(2)
12.2.1 Saturated Absorption
381(1)
12.3 The Width of Spectral Lines
382(6)
12.3.1 Natural Width and Homogeneous Linewidth
383(1)
12.3.2 Doppler Broadening and Inhomogeneous Linewidth
383(2)
12.3.3 Pressure Broadening
385(1)
12.3.4 Time-of-Flight (TOF) Broadening
386(2)
12.4 Doppler-Free Spectroscopy
388(6)
12.4.1 Spectroscopy with Molecular Beams
388(1)
12.4.2 Saturation Spectroscopy
388
12.4.3 Two-Photon Spectroscopy
391
12.5 Light Forces
394(13)
12.5.1 Radiation Pressure in a Propagating Wave
395(2)
12.5.2 Damping Forces
397(2)
12.5.3 Heating Forces, Doppler Limit
399(8)
12.5.4 Dipole Forces in a Standing Wave
401
12.5.5 Generalization
403(1)
12.5.6 Optical Tweezers
403(1)
Problems
404(3)
13 Coherent Light-Matter Interaction
407(10)
13.1 Weak Coupling and Strong Coupling
407(63)
13.1.1 AC Stark Effect and Dressed-Atom Model
408(62)
13.2 Transient Phenomena
410
13.2.1 π Pulses
411(1)
13.2.2 Free Induction Decay
411
13.2.3 Photon Echo
413
13.2.4 Quantum Beats
414(1)
13.2.5 Wave Packets
415(2)
14 Photons: An Introduction to Quantum Optics
417(40)
14.1 Does Light Exhibit Quantum Character?
417(1)
14.2 Quantization of the Electromagnetic Field
418(3)
14.3 Spontaneous Emission
421(6)
14.3.1 Vacuum Fluctuations Perturb Excited Atoms
422(1)
14.3.2 Weisskopf and Wigner Theory of Spontaneous Emission
423(2)
14.3.3 Suppression of Spontaneous Emission
425(1)
14.3.4 Interpretation of Spontaneous Emission
426(1)
14.3.5 Open Quantum Systems and Reservoirs
426(1)
14.4 Resonance Fluorescence
427(8)
14.4.1 The Spectrum of Resonance Fluorescence
427(1)
14.4.2 Spectra and Correlation Functions
428(3)
14.4.3 Spectra and Quantum Fluctuations
431(1)
14.4.4 Coherent and Incoherent Contributions of Resonance Fluorescence
432(1)
14.4.4.1 The Mollow Triplet
433(2)
14.5 Light Fields in Quantum Optics
435(9)
14.5.1 Fluctuating Light Fields
435(1)
14.5.1.1 First-Order Coherence
435(1)
14.5.1.2 Second-Order Coherence
436(1)
14.5.1.3 Hanbury Brown and Twiss Experiment
437(1)
14.5.2 Quantum Properties of Important Light Fields
438(1)
14.5.2.1 Fock States or Number States
439(1)
14.5.2.2 Coherent Light Fields and Laser Light
439(2)
14.5.2.3 Thermal Light Fields
441(1)
14.5.3 Photon Number Distribution
441(2)
14.5.4 Bunching and Anti-bunching
443(1)
14.5.4.1 Bunching
443(1)
14.5.4.2 Anti-bunching
443(1)
14.6 Two-Photon Optics
444(4)
14.6.1 Spontaneous Parametric Fluorescence, SPDC Sources
445(1)
14.6.2 Hong-Ou-Mandel Interferometer
446(2)
14.7 Entangled Photons
448(9)
14.7.1 Entangled States According to Einstein-Podolsky-Rosen
448(1)
14.7.1.1 The Einstein-Podolsky-Rosen (EPR) Paradox
448(2)
14.7.2 Bell's Inequality
450(1)
14.7.3 Bell's Inequality and Quantum Optics
451(1)
14.7.4 Polarization-Entangled Photon Pairs
452(1)
14.7.5 A Simple Bell Experiment
453(2)
Problems
455(2)
15 Nonlinear Optics I: Optical Mixing Processes
457(28)
15.1 Charged Anharmonic Oscillators
457(2)
15.2 Second-Order Nonlinear Susceptibility
459(5)
15.2.1 Mixing Optical Fields: Three-Wave Mixing
459(2)
15.2.2 Symmetry Properties of Susceptibility
461(1)
15.2.2.1 Intrinsic Permutation Symmetry
461(1)
15.2.2.2 Real Electromagnetic Fields
461(1)
15.2.2.3 Loss-Free Media
461(1)
15.2.3 Two-Wave Polarization
462(1)
15.2.3.1 Contracted Notation
462(1)
15.2.3.2 Kleinman Symmetry
462(1)
15.2.4 Crystal Symmetry
463(1)
15.2.5 Effective Value of the Nonlinear d Coefficient
463(1)
15.3 Wave Propagation in Nonlinear Media
464(2)
15.3.1 Coupled Amplitude Equations
464(1)
15.3.2 Coupled Amplitudes for Three-Wave Mixing
465(1)
15.3.3 Energy Conservation
466(1)
15.4 Frequency Doubling
466(11)
15.4.1 Weak Conversion
467(1)
15.4.2 Strong Conversion
468(1)
15.4.3 Phase Matching in Nonlinear and Birefringent Crystals
469(2)
15.4.3.1 Angle or Critical Phase Matching
471(1)
15.4.3.2 Noncritical or 90° Phase Matching
471(1)
15.4.4 Frequency Doubling with Gaussian Beams
472(2)
15.4.5 Resonant Frequency Doubling
474(1)
15.4.5.1 Passive Resonators
474(2)
15.4.6 Quasi-phase Matching
476(1)
15.5 Sum and Difference Frequency
477(2)
15.5.1 Sum Frequency
477(1)
15.5.2 Difference Frequency and Parametric Gain
478(1)
15.6 Optical Parametric Oscillators
479(6)
Problems
482(3)
16 Nonlinear Optics II: Four-Wave Mixing
485(12)
16.1 Frequency Tripling in Gases
485(2)
16.2 Nonlinear Refraction Coefficient (Optical Kerr Effect)
487(7)
16.2.1 Self-Focusing
488(1)
16.2.1.1 Kerr Lens Mode Locking
489(1)
16.2.1.2 Spatial Solitons
490(1)
16.2.1.3 Nonlinear Optical Devices
491(1)
16.2.2 Phase Conjugation
491(3)
16.3 Self-Phase Modulation
494(3)
Problems
495(2)
A Mathematics for Optics
497(6)
A.1 Spectral Analysis of Fluctuating Measurable Quantities
497(5)
A.1.1 Correlations
500(1)
A.1.2 Schottky Formula
501
A.2 Time Averaging Formula
502(1)
B Supplements in Quantum Mechanics
503(4)
B.1 Temporal Evolution of a Two-State System
503(1)
B.1.1 Two-Level Atom
503(1)
B.1.2 Temporal Development of Pure States
503(1)
B.2 Density Matrix Formalism
504(1)
B.3 Density of States
505(2)
Bibliography 507(12)
Index 519
Dieter Meschede studied physics in several places including Hannover, Cologne, Boulder, and Munich. He has been professor of experimental physics since 1990. At the University of Bonn his current scientific interests are directed towards light-matter interactions at the most elementary level, i.e. with single atoms and single photons for applications in quantum technology.