Atjaunināt sīkdatņu piekrišanu

E-grāmata: Optimal Control: Weakly Coupled Systems and Applications

(Belgrade University, Serbia), (Virginia Commonwealth University, Richmond, VA, USA, an), (Korea University, Seoul, South Korea), (Nat'l Chung-Hsing University, Taichung, Taiwan, China), (Rutgers University, Piscataway, New Jersey, USA)
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 206,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book is intended for engineers, mathematicians, physicists, and computer scientists interested in control theory and its applications. It describes a special class of linear and bilinear control systems known as weakly coupled systems. These systems are examined using two new approaches developed by the authors in the last 20 years: the recursive approach (based on fixed point iterations) and the Hamiltonian approach (based on block diagonalization of the Hamiltonian matrix of optimal control theory of linear systems). Theoretical results are demonstrated with applications from the aerospace, chemical, electrical, and automotive industries. The design of subsystem-level optimal filters and controllers is also addressed. Self-contained chapters are grouped in sections on the recursive approach, the Hamiltonian approach, and bilinear weakly coupled control systems. Gajic is affiliated with Rutgers University. Annotation ©2009 Book News, Inc., Portland, OR (booknews.com)
Preface xi
Introduction
1(18)
References
10(9)
PART I Recursive Approach for Linear Weakly Coupled Control Systems
Linear Weakly Coupled Control Systems
19(36)
Introduction
19(1)
Weakly Coupled Linear Continuous Systems
19(8)
Weakly Coupled Algebraic Lyapunov Equation
21(2)
Weakly Coupled Algebraic Riccati Equation
23(4)
Approximate Linear Regulator for Continuous Systems
27(1)
Weakly Coupled Linear Discrete Systems
28(6)
Weakly Coupled Discrete Algebraic Lyapunov Equation
28(2)
Case Study: Discrete Catalytic Cracker
30(1)
Weakly Coupled Discrete Algebraic Riccati Equation
30(4)
Approximate Linear Regulator for Discrete Systems
34(5)
Case Study: Discrete Model of a Chemical Plant
35(4)
Output Feedback Control for Linear Weakly Coupled Systems
39(11)
Case Study: 12-Plate Absorption Column
47(3)
Notes and Comments
50(1)
References
51(4)
Quasi-Weakly Coupled Linear Control Systems
55(22)
Optimal Controller for Quasi-Weakly Coupled Linear Systems
55(10)
Chemical Reactor
61(1)
F-4 Fighter Aircraft
62(1)
Case Study: Multimachine Power System
63(2)
Reduced-Order Controller for a Class of Weakly Coupled Systems
65(9)
Numerical Example
70(1)
Case Study 1: L-1011 Fighter Aircraft
71(1)
Case Study 2: Distillation Column
72(2)
Notes
74(1)
Appendix 3.1
74(1)
References
75(2)
Weakly Coupled Singularly Perturbed Systems
77(20)
Introduction
77(1)
Weakly Coupled Singularly Perturbed Linear Control Systems
78(7)
Case Study: A Supported Beam
83(1)
Case Study: A Satellite Optimal Control Problem
84(1)
Quasi-Weakly Coupled Singularly Perturbed Control Systems
85(8)
Case Studies
91(2)
Conclusion
93(1)
References
94(3)
Decoupling Transformation, Lyapunov Equation, and Boundary Value Problem
97(30)
Decoupling Transformation of Gajic and Shen
98(9)
Decoupling Transformation of Qureshi
104(3)
Decoupling Transformation for N Weakly Coupled Subsystems
107(9)
Decompositions of the Differential Lyapunov Equation
116(1)
Boundary Value Problem of Linear Continuous Systems
117(5)
Boundary Value Problem of Linear Discrete Systems
122(3)
References
125(2)
Stochastic Linear Weakly Coupled Systems
127(46)
Continuous Weakly Coupled Stochastic Linear Control Systems
128(11)
Case Study: Electric Power System
137(2)
Discrete Weakly Coupled Stochastic Linear Control Systems
139(9)
Case Study: Distillation Column
147(1)
Stochastic Output Feedback of Discrete Systems
148(13)
Output Feedback of Quasi-Weakly Coupled Linear Discrete Systems
150(8)
Case Studies: Flight Control Systems for Aircraft
158(3)
Optimal Control of Stochastic Jump Parameter Linear Systems
161(8)
Comments
169(1)
References
169(4)
Nash Differential Games
173(20)
Weakly Coupled Linear-Quadratic Nash Games
173(3)
Solution of Coupled Algebraic Riccati Equations
176(8)
Zeroth-Order Approximation
177(1)
Solution of Higher Order of Accuracy
178(6)
Numerical Example
184(2)
Appendix 7.1
186(1)
Appendix 7.2: Algorithm for Solving Coupled Algebraic Riccati Equations of Nash Differential Games
186(2)
References
188(5)
PART II Hamiltonian Approach for Linear Weakly Coupled Control Systems
Finite Time Optimal Control via Hamiltonian Method
193(32)
Open-Loop Optimal Control in Continuous-Time
193(6)
Case Study: Distillation Column
199(1)
Open-Loop Optimal Control in Discrete-Time
199(6)
Numerical Example
204(1)
Differential Riccati Equation
205(8)
Case Study: Gas Absorber
211(2)
Difference Riccati Equation
213(7)
Numerical Example
219(1)
Concluding Remarks
220(1)
Appendix 8.1
221(1)
Appendix 8.2
221(1)
References
222(3)
Hamiltonian Method for Steady State Optimal Control and Filtering
225(46)
Exact Decomposition of the Weakly Coupled Continuous-Time Algebraic Riccati Equation
225(6)
Case Study: A Satellite Control Problem
231(1)
Optimal Filtering in Continuous-Time
231(9)
A Helicopter Filtering Problem
238(2)
Optimal Control and Filtering in Discrete-Time
240(18)
Linear-Quadratic Optimal Control
241(6)
Optimal Kalman Filtering
247(6)
Linear-Quadratic Gaussian Optimal Control Problem
253(3)
Case Study: Distillation Column
256(2)
Optimal Control of Weakly Coupled Systems with N Subsystems
258(10)
Decoupling of the Algebraic Riccati Equation
258(6)
Kalman Filtering for N Weakly Coupled Subsystems
264(3)
Linear-Quadratic Gaussian Optimal Control
267(1)
Conclusion
268(1)
Appendix 9.1
269(1)
References
269(2)
Eigenvector Method for the Hamiltonian Approach
271(26)
Introduction
271(1)
Decomposition of Weakly Coupled Algebraic Riccati Equation
272(3)
Eigenvector Method for Nonsymmetric (Nonsquare) Algebraic Riccati Equation
275(3)
Exact Decomposition Algorithm for Weakly Coupled Systems
278(5)
Examples
283(7)
Conclusion
290(1)
Appendix 10.1 Justification of Step 3 of Algorithm 10.2
291(1)
Appendix 10.2 On the Number of Solutions to Nonsymmetric ARE
292(1)
References
292(5)
PART III Bilinear Weakly Coupled Control Systems
Optimal Control of Bilinear Weakly Coupled Systems
297(28)
Introduction
297(2)
Optimal Control for Weakly Coupled Bilinear Systems Using SGA
299(11)
Problem Formulation
299(3)
Design of Optimal Control Law for Weakly Coupled Bilinear Systems Using SGA
302(5)
Case Study: A Paper Making Machine
307(3)
Robust H∞ Control for Weakly Coupled Bilinear Systems with Parameter Uncertainties Using SGA
310(11)
Problem Formulation
311(3)
Design of H∞ Control Law for Weakly Coupled Bilinear Systems with Parameter Uncertainties Using SGA
314(6)
Case Study: A Paper Making Machine
320(1)
Conclusion
321(2)
References
323(2)
Index 325
Zoran Gajic, Myo-Taeg Lim, Dobrila Skataric, Su Wu-Chang, Vojislav Kecman