Atjaunināt sīkdatņu piekrišanu

E-grāmata: Optimal Fractionation in Radiotherapy

(University of Washington)
  • Formāts: PDF+DRM
  • Izdošanas datums: 19-Oct-2023
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781009341141
  • Formāts - PDF+DRM
  • Cena: 180,83 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 19-Oct-2023
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781009341141

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This monograph provides a mathematically rigorous overview of optimal fractionation in cancer radiotherapy, which seeks to address the fundamental tradeoff of maximizing tumor-kill while protecting nearby healthy tissue from toxic effects. Most mathematical research on exact solutions to this problem is scattered across journals in applied mathematics, operations research, radiobiology, medicine, and medical physics. These works rarely include rigorous proofs or detailed derivations of their methodologies. Moreover, computer programs utilized for conducting numerical experiments seldom accompany these publications, thereby jeopardizing reproducibility. This monograph aims to provide a comprehensive pedagogical reference that brings researchers up to speed on optimal fractionation, utilizing and illustrating analytical techniques from linear algebra, calculus, linear programming, quadratic and nonlinear programming, robust optimization, and inverse optimization. Its purpose is to help readers understand the mathematics behind the optimal fractionation problem, empowering them to contribute original work to this field.

Recenzijas

'This book provides a wonderfully rigorous and comprehensive treatment of the mathematics behind fractionation in radiation therapy. It consolidates a significant body of work in a consistent manner, making it a go-to reference for the expert and beginner alike. The inclusion of robust optimization and inverse optimization in the context of fractionation provides considerable depth, reinforcing the value of interdisciplinary research.' Timothy Chan, University of Toronto 'This text provides a unifying mathematical framework for the fractionation decision in radiotherapy. It offers a rich blend of mathematical analysis, numerical examples, codes, exercises, and bibliographic notes for an in-depth understanding and implementation of the concepts discussed. The book presents a fresh perspective to the long-standing fractionation debate in the field of radiotherapy and can inspire the design of new clinical trials to improve treatment efficacy for cancer patients.' Ehsan Salari, Wichita State University

Papildus informācija

A comprehensive, mathematically rigorous treatment of the topic, supplemented by clinical insights from numerical experiments using computer code.
Preface;
1. Introduction;
2. Fractionation with a single organ-at-risk;
3. Fractionation with multiple organs-at-risk;
4. Robust fractionation;
5. Inverse fractionation;
6. Spatiotemporally integrated fractionation;
7. Robust spatiotemporally integrated fractionation;
8. Fractionation with two modalities;
9. Robust fractionation with two modalities;
10. Directions for future work ; Appendix Background on optimization; Bibliography Index.
Archis Ghate is a Professor of Industrial & Systems Engineering at the University of Washington, where he previously served for five years as the College of Engineering Endowed Professor of Healthcare Operations Research. His research focuses on optimization. He received a PhD in Industrial and Operations Engineering from the University of Michigan in 2006 and an M.S. in Management Science and Engineering from Stanford University in 2003.