Atjaunināt sīkdatņu piekrišanu

E-grāmata: Optimal Homotopy Asymptotic Method: Engineering Applications

  • Formāts: PDF+DRM
  • Izdošanas datums: 02-Apr-2015
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319153742
  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 02-Apr-2015
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319153742

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book emphasizes in detail the applicability of the Optimal Homotopy Asymptotic Method to various engineering problems. It is a continuation of the book “Nonlinear Dynamical Systems in Engineering: Some Approximate Approaches”, published at Springer in 2011 and it contains a great amount of practical models from various fields of engineering such as classical and fluid mechanics, thermodynamics, nonlinear oscillations, electrical machines and so on. The main structure of the book consists of 5 chapters. The first chapter is introductory while the second chapter is devoted to a short history of the development of homotopy methods, including the basic ideas of the Optimal Homotopy Asymptotic Method. The last three chapters, from Chapter 3 to Chapter 5, are introducing three distinct alternatives of the Optimal Homotopy Asymptotic Method with illustrative applications to nonlinear dynamical systems. The third chapter deals with the first alternative of our approach with two iterations. Five applications are presented from fluid mechanics and nonlinear oscillations. The Chapter 4 presents the Optimal Homotopy Asymptotic Method with a single iteration and solving the linear equation on the first approximation. Here are treated 32 models from different fields of engineering such as fluid mechanics, thermodynamics, nonlinear damped and undamped oscillations, electrical machines and even from physics and biology. The last chapter is devoted to the Optimal Homotopy Asymptotic Method with a single iteration but without solving the equation in the first approximation.
1 Introduction
1(8)
References
6(3)
2 Optimal Homotopy Asymptotic Method
9(14)
2.1 A Short History of the Homotopy
9(4)
2.2 Basic Idea of OHAM
13(3)
2.3 Convergence of the Homotopy-Series 2.28
16(1)
2.4 Convergence of the Approximate Solution of Order m Given by Eq. 2.29
17(6)
References
22(1)
3 The First Alternative of the Optimal Homotopy Asymptotic Method
23(46)
3.1 Thin Film Flow of a Fourth-Grade Fluid Down a Vertical Cylinder
24(4)
3.1.1 Numerical Examples
27(1)
3.2 The Jeffery--Hamel Flow Problem
28(12)
3.2.1 Numerical Examples
36(4)
3.3 Oscillations of a Mass Attached to a Stretched Wire
40(6)
3.3.1 Numerical Examples
45(1)
3.4 The Motion of a Particle on a Rotating Parabola
46(11)
3.4.1 Numerical Examples
54(3)
3.5 Nonlinear Oscillator with Discontinuities and Fractional-Power Restoring Force
57(12)
References
67(2)
4 The Second Alternative of the Optimal Homotopy Asymptotic Method
69(322)
4.1 The Flow of a Walters-Type B' Viscoelastic Fluid in a Vertical Channel with Porous Wall
70(45)
4.1.1 Problem Statement and Governing Equation
72(4)
4.1.2 Solution of Walters-Type B' Viscoelastic Fluid in a Vertical Channel with OHAM
76(6)
4.1.3 Governing Equation of the Temperature and Its Solution
82(2)
4.1.4 Numerical Results and Discussions
84(31)
4.2 Thin Film Flow of an Oldroyd 6-Constant Fluid over Moving Belt
115(31)
4.2.1 Governing Equations
116(2)
4.2.2 Application of OHAM to Thin Film Flow of an Oldroyd 6-Constant Fluid
118(8)
4.2.3 Numerical Results and Discussions
126(20)
4.3 Falkner-Skan Equation
146(27)
4.3.1 The Governing Equation
147(1)
4.3.2 Application of OHAM to Falkner-Skan Equation
148(5)
4.3.3 Numerical Examples
153(20)
4.4 Viscous Flow Due to a Stretching Surface with Partial Slip
173(26)
4.4.1 Equation of Motion
174(1)
4.4.2 Application of OHAM to Viscous Fluid Given by Eq. 4.220
175(3)
4.4.3 Numerical Examples
178(21)
4.5 The Flow and Heat Transfer in a Viscous Fluid Over an Unsteady Stretching Surface
199(26)
4.5.1 Equations of Motion
200(2)
4.5.2 Application of OHAM to Flow and Heat Transfer
202(8)
4.5.3 Numerical Examples
210(15)
4.6 Blasius' Problem
225(5)
4.6.1 Solution of Blasius' Problem by Optimal Homotopy Asymptotic Method
228(2)
4.7 Thermal Radiation on MHD Flow over a Stretching Porous Sheet
230(6)
4.7.1 Solution of the Problem with Optimal Homotopy Asymptotic Method
231(3)
4.7.2 Numerical Examples
234(2)
4.8 Nonlinear Equations Arising in Heat Transfer
236(10)
4.8.1 Cooling of a Lumped System with Variable Specific Heat
237(4)
4.8.2 The Temperature Distribution Equation in a Thick Rectangular Fin Radiation to Free Space
241(2)
4.8.3 A Heat Transfer Problem
243(3)
4.9 The Nonlinear Age-Structured Population Models
246(14)
4.9.1 Analytical Solution for Nonlinear Age-Structured Population Models Using OHAM
248(12)
4.10 Volterra's Population Model
260(4)
4.10.1 Numerical Examples
263(1)
4.11 Lotka-Volterra Model with Three Species
264(7)
4.11.1 Numerical Examples
268(3)
4.12 Bratu's Problem
271(10)
4.12.1 The Exact Solution of Bratu's Problem 4.548
272(2)
4.12.2 Solutions of the Bratu's Problem by Means of OHAM
274(1)
4.12.3 Numerical Examples
275(6)
4.13 Lane-Emden Equation
281(6)
4.13.1 Solution of Eq. 4.584 by Means of OHAM
282(2)
4.13.2 Numerical Examples
284(3)
4.14 Oscillations of a Uniform Cantilever Beam Carrying an Intermediate Lumped Mass and Rotary Inertia
287(7)
4.14.1 Numerical Examples
291(3)
4.15 Nonlinear Jerk Equations
294(5)
4.15.1 Numerical Examples
297(2)
4.16 Nonlinear Oscillator with Discontinuities
299(4)
4.16.1 Numerical Examples
302(1)
4.17 Truly Nonlinear Oscillators
303(7)
4.17.1 Solution of Eqs. 4.673 Using OHAM
304(2)
4.17.2 Numerical Examples
306(4)
4.18 The Nonlinear Oscillator x + (1 + x2)x = 0
310(4)
4.18.1 Approximate Periodic Solution of Eq. 4.690 by Means of OHAM
310(2)
4.18.2 Numerical Examples
312(2)
4.19 Nonlinear Oscillators with Quadratic and Cubic Nonlinearities
314(5)
4.19.1 Solutions of Eq. 4.715 by Means of OHAM
316(2)
4.19.2 Numerical Examples
318(1)
4.20 Damped Oscillator with Fractional-Order Restoring Force
319(6)
4.20.1 Numerical Examples
322(3)
4.21 The Oscillator with Cubic and Harmonic Restoring Force
325(5)
4.21.1 Numerical Examples
328(2)
4.22 Duffing Harmonic Oscillator
330(5)
4.22.1 Solutions of Duffing-Harmonic Oscillator Using OHAM
332(1)
4.22.2 Numerical Examples
333(2)
4.23 The Oscillator with Linear and Cubic Elastic Restoring Force and Quadratic Damping
335(5)
4.23.1 Numerical Examples
338(2)
4.24 Generalized Duffing Equation
340(8)
4.24.1 Numerical Examples
344(4)
4.25 Generalized Van der Pol Equation
348(9)
4.25.1 Solutions of the Van der Pol Equation 4.835 by Means of OHAM
350(3)
4.25.2 Numerical Examples
353(4)
4.26 Oscillations of an Electrical Machine
357(3)
4.26.1 Numerical Example
360(1)
4.27 Dynamic Analysis of a Rotating Electric Machine
360(7)
4.27.1 Numerical Examples
365(2)
4.28 A Non-conservative Oscillatory System of a Rotating Electrical Machine
367(4)
4.29 Nonlinear Dynamics of an Electrical Machine Rotor-Bearing System
371(20)
4.29.1 Numerical Examples
378(2)
References
380(11)
5 The Third Alternative of the Optimal Homotopy Asymptotic Method
391(72)
5.1 Overview
391(3)
5.1.1 The Convergence of the Approximate Solution 5.6
394(1)
5.2 Thomas-Fermi Equation
394(8)
5.2.1 Approximate Solution of the Thomas-Fermi Equation by OHAM
396(2)
5.2.2 Numerical Examples
398(4)
5.3 Multiple Solutions for the Upper-Convected Maxwell Fluid Over a Porous Stretching Plate
402(14)
5.3.1 Multiple Solutions with OHAM
404(5)
5.3.2 Numerical Results
409(7)
5.4 Dual Solutions of the Unsteady Viscous Flow Over a Shrinking Cylinder
416(18)
5.4.1 Multiple-Dual Approximate Solutions of the Unsteady Viscous Flow by OHAM
421(2)
5.4.2 Numerical Examples
423(11)
5.5 Axisymmetric Flow of an Incompressible Fluid Between Two Parallel Plates
434(8)
5.5.1 Solutions of the Problem 5.174 and 5.175 with OHAM
436(2)
5.5.2 Numerical Examples
438(4)
5.6 Heat Transfer with Variable Thermal Conductivity
442(4)
5.6.1 Approximate Solutions of Eqs. 5.194 and 5.195 by OHAM
443(2)
5.6.2 Numerical Examples
445(1)
5.7 Nonlinear Dynamical Model of a Permanent Magnet Synchronous Generator
446(17)
5.7.1 Dynamic Model
447(2)
5.7.2 Approximate Solution with OHAM
449(3)
5.7.3 Results and Discussions
452(11)
References 463