Atjaunināt sīkdatņu piekrišanu

E-grāmata: Optimal Stochastic Scheduling

  • Formāts - PDF+DRM
  • Cena: 154,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Many interesting and important results on stochastic scheduling problems have been developed in recent years, with the aid of probability theory. This book provides a comprehensive and unified coverage of studies in stochastic scheduling. The objective is two-fold: (i) to summarize the elementary models and results in stochastic scheduling, so as to offer an entry-level reading material for students to learn and understand the fundamentals of this area and (ii) to include in details the latest developments and research topics on stochastic scheduling, so as to provide a useful reference for researchers and practitioners in this area.

Optimal Stochastic Scheduling is organized into two parts: Chapters 1-4 cover fundamental models and results, whereas Chapters 5-10 elaborate on more advanced topics. More specifically, Chapter 1 provides the relevant basic theory of probability and then introduces the basic concepts and notation of stochastic scheduling. In Chapters 2 and 3, the authors review well-established models and scheduling policies, under regular and irregular performance measures, respectively. Chapter 4 describes models with stochastic machine breakdowns. Chapters 5 and 6 introduce, respectively, the optimal stopping problems and the multi-armed bandit processes, which are necessary for studies of more advanced subjects in subsequent chapters. Chapter 7 is focused on optimal dynamic policies, which allow adjustments of policies based on up-to-date information. Chapter 8 describes stochastic scheduling with incomplete information in the sense that the probability distributions of random variables contain unknown parameters, which can however be estimated progressively according to updated information. Chapter 9 is devoted to the situation where the processing time of a job depends on the time when it is started. Lastly, in Chapter 10 the authors look at several recent models beyond those surveyed in the previous chapters.



This comprehensive book details elementary models and results in stochastic scheduling. It also presents the latest developments and research topics in the area.

Recenzijas

As the book both summarizes the elementary models and discusses in details the newest, more complicated topics on stochastic scheduling, it is a valuable contribution, which is simultaneously a well-organized reading material for the graduate and postgraduate students, as well as a good starting point for further literature research for the researchers in the area. (Marcin Anholcer, zbMATH 1401.90008, 2019)

This book provides, in about equal measure, an introduction to stochastic scheduling and discussions of several advanced topics in the area. This advanced text provides a useful introduction to stochastic scheduling and should prove to be of particular interest to researchers in thisbranch of scheduling. (Andrew Wirth, Mathematical Reviews, March, 2017)

1 Basic Concepts
1(48)
1.1 Fundamental of Probability
1(22)
1.1.1 Probability Space
1(8)
1.1.2 Random Variables
9(10)
1.1.3 Family of Distributions
19(4)
1.2 Stochastic Orders
23(8)
1.2.1 Definitions of Stochastic Orders
23(3)
1.2.2 Relations Between Stochastic Orders
26(3)
1.2.3 Existence of Stochastic Orders
29(2)
1.3 Model Description
31(14)
1.3.1 Job Characteristics
31(4)
1.3.2 Machine Environments
35(2)
1.3.3 Scheduling Policies
37(3)
1.3.4 Performance Measures
40(5)
1.4 Notation
45(4)
2 Regular Performance Measures
49(46)
2.1 Total Completion Time Cost
49(8)
2.1.1 Single Machine
49(3)
2.1.2 Parallel Machines
52(5)
2.2 Makespan
57(3)
2.3 Regular Costs with Due Dates
60(6)
2.3.1 Weighted Number of Tardy Jobs
60(4)
2.3.2 Total Weighted Tardiness
64(2)
2.4 General Regular Costs
66(8)
2.4.1 Total Expected Cost
67(5)
2.4.2 Maximum Expected Cost
72(2)
2.5 Exponential Processing Times
74(11)
2.5.1 Optimal Sequence for General Costs
76(3)
2.5.2 Optimal Sequences with Due Dates
79(3)
2.5.3 Examples of Applications
82(3)
2.6 Compound-Type Distributions
85(10)
2.6.1 Classes of Compound-Type Distributions
85(4)
2.6.2 Optimal Sequences for Total Expected Costs
89(2)
2.6.3 Optimal Sequences with Due Dates
91(4)
3 Irregular Performance Measures
95(46)
3.1 Earliness/Tardiness Penalties
96(21)
3.1.1 Normal Processing Times
96(10)
3.1.2 Exponential Processing Times
106(11)
3.2 Expected Cost of Earliness and Tardy Jobs
117(10)
3.2.1 Single Machine Scheduling
118(2)
3.2.2 Parallel Machine Scheduling
120(7)
3.3 Completion Time Variance
127(8)
3.3.1 The Weighted Variance Problem
128(2)
3.3.2 Structural Property of Optimal Sequence
130(3)
3.3.3 Algorithm
133(2)
Appendix
135(6)
4 Stochastic Machine Breakdowns
141(46)
4.1 Formulation of Breakdown Processes
142(3)
4.1.1 Machine Breakdown Processes
142(1)
4.1.2 Processing Time and Achievement
143(2)
4.2 No-Loss (Preemptive-Resume) Model
145(12)
4.2.1 Completion Time
145(1)
4.2.2 Minimizing Regular Cost Functions
146(3)
4.2.3 Minimizing Irregular Costs
149(8)
4.3 Total-Loss (Preemptive-Repeat) Model
157(22)
4.3.1 Expected Occupying Time
158(6)
4.3.2 Minimizing the Expected Weighted Flowtime
164(5)
4.3.3 Maximizing the Expected Discounted Reward
169(10)
4.4 Partial-Loss Breakdown Models
179(8)
5 Optimal Stopping Problems
187(38)
5.1 Preliminaries
187(10)
5.1.1 σ-Algebras and Monotone Class Theorems
188(2)
5.1.2 σ-Algebras vs Linear Spaces of Measurable Functions
190(1)
5.1.3 Probability Spaces
191(1)
5.1.4 Conditional Expectations
192(1)
5.1.5 Uniform Integrability
192(4)
5.1.6 Essential Supremum
196(1)
5.2 Stochastic Processes
197(5)
5.2.1 Information Filtrations
197(2)
5.2.2 Stochastic Processes as Stochastic Functions of Time
199(3)
5.3 Stopping Times
202(4)
5.4 Martingales
206(12)
5.4.1 Definitions
206(1)
5.4.2 Doob's Stopping Theorem
207(2)
5.4.3 Upcrossings
209(2)
5.4.4 Maxima Inequalities
211(2)
5.4.5 Martingale Convergence Theorems
213(1)
5.4.6 Regularity of Paths
214(4)
5.5 Optimal Stopping Problems
218(7)
6 Multi-Armed Bandit Processes
225(28)
6.1 Closed Multi-Armed Bandit Processes in Discrete Time
227(7)
6.1.1 Model and Solution
227(3)
6.1.2 Single-Armed Process
230(4)
6.1.3 Proof of Theorem 6.1
234(1)
6.2 Open Bandit Processes
234(10)
6.2.1 Formulation and Solution
236(3)
6.2.2 Proof of Theorem 6.2
239(5)
6.3 Generalized Open Bandit Problems
244(4)
6.3.1 Nash's Generalized Bandit Problem
244(3)
6.3.2 Extension of Nash's Model
247(1)
6.4 Closed Multi-Armed Bandit Processes in Continuous Time
248(5)
6.4.1 Problem Formulation and Its Solution
248(3)
6.4.2 An Account for Deteriorating Bandits
251(2)
7 Dynamic Policies
253(46)
7.1 Dynamic Policies and Information
253(4)
7.2 Restricted Dynamic Policies for Total-Loss Breakdown Models
257(12)
7.2.1 Total-Loss Breakdown Model
257(4)
7.2.2 Optimal Policies with Independent Processing Times
261(5)
7.2.3 Optimal Policies with Identical Processing Times
266(3)
7.3 Restricted Dynamic Policies for No-Loss Breakdown Models
269(3)
7.4 Partial-Loss Breakdown Models
272(9)
7.4.1 The Semi-Markov Model for Job Processing
272(2)
7.4.2 Integral Equations for Gittins Indices
274(2)
7.4.3 Optimal Policies via Gittins Indices
276(2)
7.4.4 Specific Partial-Loss Breakdown Models
278(3)
7.5 Unrestricted Policies for a Parallel Machine Model
281(10)
7.5.1 Optimality Equation
282(1)
7.5.2 SEPT Policies
283(5)
7.5.3 LEPT Policies
288(3)
Appendix
291(6)
7.6 Bibliographical Comments
297(2)
8 Stochastic Scheduling with Incomplete Information
299(22)
8.1 Modelling and Probabilistic Characteristics
300(4)
8.1.1 Formulation and Assumptions
300(1)
8.1.2 Repetition Frequency and Occupying Time
301(2)
8.1.3 Impact of Incomplete Information on Static Policies
303(1)
8.2 Optimal Restricted Dynamic Policies
304(4)
8.3 Posterior Gittins Indices with One-Step Reward Rates
308(13)
8.3.1 Posterior Gittins Indices by One-Step Reward Rates
308(3)
8.3.2 Incompletion Information for Processing Times
311(10)
9 Optimal Policies in Time-Varying Scheduling
321(26)
9.1 Stochastic Scheduling with Deteriorating Processing Times
322(17)
9.1.1 Model Formulation
322(3)
9.1.2 Processibility
325(6)
9.1.3 The Characteristics of Occupying Time
331(4)
9.1.4 Optimal Policies
335(4)
9.2 Stochastic Model with Learning Effects
339(8)
9.2.1 Optimal Policies with Learning Effects
340(4)
9.2.2 Consideration of Unreliable Machines
344(3)
10 More Stochastic Scheduling Models
347(48)
10.1 Optimization Under Stochastic Order
347(13)
10.1.1 Basic Problem
348(1)
10.1.2 Stochastic Minimization of Maximum Lateness
349(5)
10.1.3 Optimal Solutions with Exponential Processing Times and Due Dates
354(6)
10.2 Team-Work Task Scheduling
360(17)
10.2.1 Team-Work Tasks
360(1)
10.2.2 The Deterministic Model
361(6)
10.2.3 The Stochastic Model
367(10)
10.3 Scheduling of Perishable Products
377(18)
10.3.1 Perishable Products
377(3)
10.3.2 The Base Model
380(3)
10.3.3 Waiting Decision on a Finished Product
383(2)
10.3.4 Decisions on Unfinished Products
385(5)
10.3.5 Accounting for Random Market Demand
390(5)
References 395(12)
Index 407