Atjaunināt sīkdatņu piekrišanu

E-grāmata: Optimization and Learning: 7th International Conference, OLA 2024, Dubrovnik, Croatia, May 13-15, 2024, Revised Selected Papers

Edited by , Edited by , Edited by
  • Formāts - PDF+DRM
  • Cena: 77,31 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the refereed proceedings of the 7th International Conference on Optimization and Learning, OLA 2024, held in Dubrovnik, Croatia, during May 1315, 2024.





The 24 full papers presented here were carefully reviewed and selected from 64 submissions. They were organized in the following topical sections: synergies between optimization and machine learning; enhancing optimization and learning techniques; transportation and routing; and applications.
.- Synergies Between Optimization and Machine Learning.

.- How is the objective function of the Feature Selection problem
formulated?.

.- HOTS : A containers resource allocation hybrid method using machine.

.- Optimisation-based classication tree: A game theoretic approach to group
fairness.

.- JaxDecompiler: Redening Gradient-Informed Software Design.

.- Adapted Q-learning for the Blocking Job Shop Scheduling Problem.

.- NeuroLGP-SM: A Surrogate-assisted Neuroevolution Approach using Linear
Genetic Programming.

.- Neural Architecture Tuning: A BO-Powered NAS Tool.

.- Enhancing Optimization and Learning Techniques.

.- A Multi-objective Clustering Algorithm Integrating Intra-clustering and
Inter-clustering Measures.

.- A Bayesian Optimization Approach to Algorithm Parameter Tuning in
Constrained Multiobjective Optimization.

.- Evidence on the Regularisation Properties of Maximum-Entropy Reinforcement
Learning.

.- A Benchmark for Missing Data Imputation Techniques: development
perspectives and performance comparative.

.- Approaching Single-Episode Survival Reinforcement Learning with
Safety-Threshold Q-Learning.

.- Feature Selection Based on Membrane Clustering.

.- Transportation and Routing.

.- Learning Insertion Patterns to Enhance Operational Eciency in Large-Scale
Dial-a-Ride Systems

.- A Constraint Programming Approach for the Preference Tourist Trip Design
Problem.

.- Solving a shareable-setup time prize collection VRP applied to an
electrical maintenance sector.

.- Applications.

.- Biologically-Inspired Algorithms for Adaptive Non-Player Character
Behavior in Video-Games.

.- Optimization of Hydro Generation and Load Forecasting Based On LSTN.

.- Patient Visits Forecasting in the Post-Pandemic Era at Emergency
Departments.

.- Nature-Inspired Techniques for Combinatorial Reverse Auctions in
Electricity Consumption.

.- Robust Models for Learning Languages.

.- Advancing Road Safety Metrics: Exploring Index construction.

.- S3EA: A Self-Supervised Stacked Ensemble Framework for Robust Anomaly
Detection to Reduce  False Alarms.

.- A Parallel Genetic Algorithm for Qubit Mapping on Noisy Intermediate-Scale
Quantum Machines.