Atjaunināt sīkdatņu piekrišanu

E-grāmata: Optimization Under Stochastic Uncertainty: Methods, Control and Random Search Methods

  • Formāts - EPUB+DRM
  • Cena: 83,27 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book examines application and methods to incorporating stochastic parameter variations into the optimization process to decrease expense in corrective measures. Basic types of deterministic substitute problems occurring mostly in practice involve i) minimization of the expected primary costs subject to expected recourse cost constraints (reliability constraints) and remaining deterministic constraints, e.g. box constraints, as well as ii) minimization of the expected total costs (costs of construction, design, recourse costs, etc.) subject to the remaining deterministic constraints.

After an introduction into the theory of dynamic control systems with random parameters, the major control laws are described, as open-loop control, closed-loop, feedback control and open-loop feedback control, used for iterative construction of feedback controls. For approximate solution of optimization and control problems with random parameters and involving expected cost/loss-type objective, constraint functions, Taylor expansion procedures, and Homotopy methods are considered, Examples and applications to stochastic optimization of regulators are given. Moreover, for reliability-based analysis and optimal design problems, corresponding optimization-based limit state functions are constructed. Because of the complexity of concrete optimization/control problems and their lack of the mathematical regularity as required of Mathematical Programming (MP) techniques, other optimization techniques, like random search methods (RSM) became increasingly important.

Basic results on the convergence and convergence rates of random search methods are presented. Moreover, for the improvement of the – sometimes very low – convergence rate of RSM, search methods based on optimal stochastic decision processes are presented. In order to improve the convergence behavior of RSM, the random search procedure is embedded into a stochastic decision process for an optimal control of the probability distributions of the search variates (mutation random variables).


1. Optimal Control under Stochastic Uncertainty.- 2. Stochastic
Optimization of Regulators.-
3. Optimal Open-Loop Control of Dynamic Systems
under Stochastic Uncertainty.- 4. Construction of feedback control by means
of homotopy methods.- 5. Constructions of Limit State Functions.- 6. Random
Search Procedures for Global Optimization.- 7. Controlled Random Search under
Uncertainty.- 8. Controlled Random Search Procedures for Global
Optimization.- 9. Mathematical Model of Random Search Methods and
Elementary Properties.- 10. Special Random Search Methods.- 11. Accessibility
Theorems.- 12. Convergence Theorems.- 13. Convergence of Stationary Random
Search Methods for Positive Success Probability.- 14. Random Search Methods
of convergence order U(n").- 15. Random Search Methods with a Linear Rate of
Convergence.- 16. Success/Failure-driven Random Direction Procedures.-
17. Hybrid Methods.- 18. Solving optimization problems under stochastic
uncertainty by Random Search Methods(RSM).
Kurt Marti is a Professor of Engineering Mathematics at the University of Bundeswehr Munich. He has been Chairman of the IFIP-Working Group 7.7 on Stochastic Optimization and  Chairman of the GAMM-Special Interest Group Applied Stochastics and Optimization. Professor Marti has published several books, both in German and in English and he is author of more than 160 papers in refereed journals and book chapters.