Atjaunināt sīkdatņu piekrišanu

E-grāmata: Orbital Relative Motion and Terminal Rendezvous: Analytic and Numerical Methods for Spaceflight Guidance Applications

  • Formāts: EPUB+DRM
  • Sērija : Space Technology Library 39
  • Izdošanas datums: 12-Apr-2021
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030646578
  • Formāts - EPUB+DRM
  • Cena: 130,27 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Space Technology Library 39
  • Izdošanas datums: 12-Apr-2021
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030646578

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book provides a comprehensive analysis of time-fixed terminal rendezvous around the Earth using chemical propulsion.

The book has two main objectives. The first is to derive the mathematics of relative motion in near-circular orbit when subjected to perturbations emanating from the oblateness of the Earth, third-body gravity, and atmospheric drag. The mathematics are suitable for quick trajectory prediction and the creation of computer codes and efficient software to solve impulsive maneuvers and fly rendezvous missions.

The second objective of this book is to show how the relative motion theory is applied to the exact precision-integrated, long-duration, time-fixed terminal rendezvous problem around the oblate Earth for the general elliptic orbit case.

The contents are both theoretical and applied, with long-lasting value for aerospace engineers, trajectory designers, professors of orbital mechanics, and students at the graduate level and above. 

Chapter
1. The Second-Order Analytic Approximation to the Solution of the Euler-Hill Equations of Relative Motion.
Chapter
2. Analytic Solutions for the Perturbed Motion of a Spacecraft in Near-Circular Orbit, Under the Influence of the J2 and J3 Earth Zonal Harmonics, in Rotating and Inertial Cartesian Reference Frames.
Chapter
3. Analytic Solutions for the Perturbed Motion of a Spacecraft in Near-Circular Orbit, Under the Influence of the Luni-Solar Gravity, in Rotating and Inertial Cartesian Reference Frames.
Chapter
4. Effect of Luni-Solar Gravity Perturbations on a Near-Circular Orbit: Third-Body Orbit Eccentricity Considerations.
Chapter
5. Effect of Atmospheric Drag Perturbation on Circular Orbits: Atmosphere Rotation Considerations.
Chapter
6. Analytic Solution of Terminal Rendezvous in Near-Circular Orbit Around the Oblate Earth: The Computation of the Starting Guess for Iterations.
Chapter
7. Techniques of Accurate Analytic Terminal Rendezvous in Near-Circular Orbit.
Chapter
8. Coplanar Two-Impulse Rendezvous in General Elliptic Orbit with Drag.
Chapter
9. The Analysis of the Relative Motion in General Elliptic Orbit With Respect to a Dragging and Precessing Coordinate Frame.
Chapter
10. The Algorithm of the Two-Impulse Time-Fixed Noncoplanar Rendezvous with Drag and Oblateness Effects.
Chapter
11. The Analysis and Implementation of In-Plane Stationkeeping of Continuously Perturbed Walker Constellations.
Chapter
12. The Mathematical Models of the Jet Propulsion Laboratory (JPL) Artificial Satellite Analysis Program (ASAP)

Jean Albert Kéchichian is a retired engineering specialist from The Aerospace Corporation. He has made lasting contributions in Astronautical Guidance and Astrodynamics over the past 25 years. His extensive involvement in NASAs interplanetary and planetary missions include the design of the orbit sustenance maneuvering strategies of the TOPEX spacecraft, the design of the turn and orbit change maneuvers of the Active Magnetospheric Particle Tracer Explorers (AMPTE) , direct support of the Pioneer Venus Orbiter mission operations, and the Galileo Probe trajectory reconstruction accuracy analysis.  His software has been used recently by The Aerospace Corporation to fly actual spacecraft to the GEO orbit using optimal low-thrust transfer trajectories. Dr. Kéchichian received Engineers degree in Aeronautical Engineering from the Universite de Liege in Wallonie, Belgium in 1971, and his MS in Mechanical Engineering from the University of California atBerkeley in 1976. In 1977, he received his PhD in Aeronautics and Astronautics from Stanford University. From 1979 to 1987, Dr. Kéchichian was a Maneuver and Orbit Determination Analyst at JPL. From 1987 to 1989 he worked as a Senior Engineering Specialist at Ford Aerospace. Dr. Kéchichian then worked as an Engineering Specialist at The Aerospace Corporation from 1989 until his retirement.  Dr. Kéchichian has served a three-year term on the Astrodynamics Technical Committee, acted as session chairman for several Trajectory Optimization Sessions at various AIAA/AAS conferences, and served as a reviewer for the AIAA/AAS/IAF journals besides serving as an Associate Editor for the Journal of the Astronautical Sciences. His book, "Applied Nonsingular Astrodynamics," was published by Cambridge University Press in 2018.