|
|
1 | (40) |
|
|
1 | (3) |
|
|
1 | (1) |
|
1.1.2 Descriptive Concepts |
|
|
2 | (2) |
|
|
4 | (2) |
|
1.2.1 Examples and Discussion |
|
|
4 | (1) |
|
1.2.2 Geometric Interpretation of Solutions |
|
|
5 | (1) |
|
1.3 Snippets of Solution Techniques |
|
|
6 | (4) |
|
|
6 | (1) |
|
1.3.2 Linear Equations with Constant Coefficients |
|
|
7 | (1) |
|
1.3.3 First-Order Linear Equations |
|
|
8 | (1) |
|
1.3.4 Separable Equations |
|
|
8 | (2) |
|
1.4 Physically Based Second-Order ODEs |
|
|
10 | (7) |
|
1.4.1 Linear Spring-Mass Systems |
|
|
10 | (2) |
|
1.4.2 Nonlinearity, Part I: The Restoring Force |
|
|
12 | (2) |
|
|
14 | (3) |
|
1.4.4 Nonlinearity, Part II: The Frictional Force |
|
|
17 | (1) |
|
|
17 | (3) |
|
1.6 Topics Covered in This Book |
|
|
20 | (4) |
|
|
20 | (1) |
|
1.6.2 A Case Study in the Qualitative Theory of ODEs |
|
|
21 | (3) |
|
|
24 | (12) |
|
|
26 | (3) |
|
1.7.2 Computational Exercises |
|
|
29 | (2) |
|
1.7.3 Anticipatory Exercises |
|
|
31 | (2) |
|
|
33 | (3) |
|
|
36 | (5) |
|
|
36 | (1) |
|
1.8.2 The Concept "Generic" |
|
|
37 | (1) |
|
1.8.3 A Comparison Theorem |
|
|
38 | (3) |
|
2 Linear Systems with Constant Coefficients |
|
|
41 | (38) |
|
|
41 | (1) |
|
2.2 Definition and Properties of the Matrix Exponential |
|
|
42 | (8) |
|
2.2.1 Preliminaries About Norms |
|
|
42 | (4) |
|
|
46 | (2) |
|
2.2.3 The Main Theorem and Its Proof |
|
|
48 | (2) |
|
2.3 Calculation of the Matrix Exponential |
|
|
50 | (7) |
|
2.3.1 The Role of Similarity |
|
|
50 | (2) |
|
2.3.2 Two Problematic Cases |
|
|
52 | (3) |
|
2.3.3 Use of the Jordan Form |
|
|
55 | (2) |
|
2.4 Large-Time Behavior of Solutions of Linear Systems |
|
|
57 | (3) |
|
|
57 | (2) |
|
2.4.2 Tests for Eigenvalues in the Left Half-Plane |
|
|
59 | (1) |
|
2.5 Classification and Phase Portraits for 2 × 2 Systems |
|
|
60 | (3) |
|
|
60 | (2) |
|
|
62 | (1) |
|
|
62 | (1) |
|
2.6 Solution of Inhomogeneous Problems |
|
|
63 | (1) |
|
|
64 | (10) |
|
|
64 | (4) |
|
2.7.2 Practice with Linear Algebra |
|
|
68 | (2) |
|
2.7.3 Practice Sketching Phase Portraits |
|
|
70 | (2) |
|
|
72 | (2) |
|
|
74 | (5) |
|
|
74 | (1) |
|
2.8.2 Nondifferentiable Limits and the Cantor Set |
|
|
75 | (2) |
|
2.8.3 More on Generic Behavior |
|
|
77 | (2) |
|
3 Nonlinear Systems: Local Theory |
|
|
79 | (32) |
|
|
79 | (2) |
|
3.2 Local Existence Theory |
|
|
81 | (10) |
|
3.2.1 Statement of the Existence Theorem |
|
|
81 | (1) |
|
3.2.2 C1 Implies Lipschitz Continuity |
|
|
82 | (3) |
|
3.2.3 Reformulation of the IVP as an Integral Equation |
|
|
85 | (1) |
|
3.2.4 The Contraction-Mapping Principle |
|
|
85 | (2) |
|
3.2.5 Proof of the Existence Theorem |
|
|
87 | (3) |
|
3.2.6 An Illustrative Example and Picard Iteration |
|
|
90 | (1) |
|
|
91 | (1) |
|
|
91 | (5) |
|
|
91 | (2) |
|
3.3.2 More on Lipschitz Functions |
|
|
93 | (1) |
|
3.3.3 The Uniqueness Theorem |
|
|
94 | (2) |
|
3.4 Generalization to Nonautonomous Systems |
|
|
96 | (1) |
|
|
96 | (1) |
|
|
96 | (1) |
|
|
97 | (9) |
|
|
97 | (5) |
|
3.5.2 Linear ODEs with Periodic Coefficients |
|
|
102 | (2) |
|
|
104 | (2) |
|
|
106 | (5) |
|
|
106 | (2) |
|
|
108 | (3) |
|
4 Nonlinear Systems: Global Theory |
|
|
111 | (50) |
|
4.1 The Maximal Interval of Existence |
|
|
112 | (1) |
|
4.2 Two Sufficient Conditions for Global Existence |
|
|
113 | (6) |
|
4.2.1 Linear Growth of the RHS |
|
|
113 | (1) |
|
|
114 | (5) |
|
4.3 Level Sets and Trapping Regions |
|
|
119 | (4) |
|
4.3.1 Introduction via Duffing's Equation |
|
|
119 | (1) |
|
|
119 | (1) |
|
4.3.3 The Torqued Pendulum and ODEs on Manifolds |
|
|
120 | (3) |
|
4.4 Nullclines and Trapping Regions |
|
|
123 | (8) |
|
4.4.1 Nullclines in the Chemostat |
|
|
123 | (1) |
|
4.4.2 An Activator--Inhibitor System |
|
|
124 | (3) |
|
4.4.3 Sel'kov's Model for Glycolysis |
|
|
127 | (1) |
|
4.4.4 Van der Pol's Equation |
|
|
128 | (1) |
|
4.4.5 Michaelis--Menten Kinetics |
|
|
129 | (2) |
|
4.5 Continuity Properties of the Solution |
|
|
131 | (3) |
|
4.5.1 The Main Issue: Continuous Dependence on Initial Conditions |
|
|
131 | (2) |
|
4.5.2 Some Associated Formalism |
|
|
133 | (1) |
|
4.5.3 Continuity with Respect to Parameters |
|
|
134 | (1) |
|
4.6 Differentiability Properties of the Solution |
|
|
134 | (8) |
|
4.6.1 Dependence on Initial Conditions |
|
|
134 | (2) |
|
4.6.2 The Perspective of Differentiability |
|
|
136 | (1) |
|
|
137 | (1) |
|
|
138 | (2) |
|
4.6.5 Proof of Theorem 4.6.1 |
|
|
140 | (1) |
|
4.6.6 Tying Up Loose Ends |
|
|
141 | (1) |
|
|
141 | (1) |
|
|
142 | (13) |
|
|
143 | (6) |
|
4.7.2 Applying the Differentiation Theorems |
|
|
149 | (2) |
|
4.7.3 Some Mopping-Up Exercises |
|
|
151 | (1) |
|
|
152 | (1) |
|
|
153 | (2) |
|
|
155 | (1) |
|
4.9 Appendix: Euler's Method |
|
|
156 | (5) |
|
|
156 | (1) |
|
4.9.2 Theoretical Basis for the Approximation |
|
|
157 | (1) |
|
4.9.3 Convergence of the Numerical Solution |
|
|
158 | (3) |
|
5 Nondimensionalization and Scaling |
|
|
161 | (34) |
|
5.1 Classes of ODEs in Applications |
|
|
162 | (3) |
|
|
162 | (1) |
|
|
163 | (1) |
|
|
163 | (2) |
|
5.2 Scaling Example 0: Two Models from Ecology |
|
|
165 | (4) |
|
5.3 Scaling Example 1: A Nonlinear Oscillator |
|
|
169 | (3) |
|
5.4 Scaling Example 2: Sel'kov's Model for Glycolysis |
|
|
172 | (2) |
|
5.5 Scaling Example 3: The Chemostat |
|
|
174 | (4) |
|
5.5.1 ODEs Modeling Flow Through a Reactor |
|
|
174 | (2) |
|
|
176 | (2) |
|
5.6 Scaling Example 4: An Activator-Inhibitor System |
|
|
178 | (3) |
|
5.7 Scaling Example 5: Michaelis-Menten Kinetics |
|
|
181 | (3) |
|
|
184 | (7) |
|
|
185 | (2) |
|
5.8.2 Anticipatory Exercises |
|
|
187 | (2) |
|
|
189 | (2) |
|
|
191 | (4) |
|
5.9.1 Making Scaling Work for You |
|
|
191 | (3) |
|
5.9.2 A Nod to Scientific Literacy |
|
|
194 | (1) |
|
6 Trajectories Near Equilibria |
|
|
195 | (64) |
|
6.1 Stability of Equilibria |
|
|
196 | (3) |
|
|
196 | (2) |
|
6.1.2 An Easy Application |
|
|
198 | (1) |
|
6.2 Terminology to Classify Equilibria |
|
|
199 | (7) |
|
6.2.1 Terms Related to Theorem 6.1.1 |
|
|
199 | (2) |
|
6.2.2 Other Terms Based on Eigenvalues |
|
|
201 | (1) |
|
6.2.3 Section 1.6 Revisited, Part I |
|
|
202 | (3) |
|
6.2.4 Two-Dimensional Equilibria and Slopes of Nullclines |
|
|
205 | (1) |
|
6.3 Activator--Inhibitor Systems and the Turing Instability |
|
|
206 | (4) |
|
6.3.1 Equilibria of the Activator-Inhibitor System |
|
|
206 | (2) |
|
6.3.2 The Turing Instability: Destabilization by Diffusion |
|
|
208 | (2) |
|
6.4 Feedback Stabilization of an Inverted Pendulum |
|
|
210 | (5) |
|
|
215 | (5) |
|
|
215 | (2) |
|
6.5.2 Lasalle's Invariance Principle |
|
|
217 | (1) |
|
6.5.3 Construction of Lyapunov Functions: An Example |
|
|
218 | (2) |
|
6.6 Stable and Unstable Manifolds |
|
|
220 | (8) |
|
|
220 | (2) |
|
6.6.2 Statement of the Local Theorem |
|
|
222 | (1) |
|
6.6.3 A Nonlinear Example |
|
|
223 | (3) |
|
6.6.4 Global Behavior of Stable/Unstable Manifolds |
|
|
226 | (2) |
|
6.7 Drawing Phase Portraits |
|
|
228 | (5) |
|
6.7.1 Example 1: The Chemostat |
|
|
229 | (1) |
|
6.7.2 Example 2: The Activator-Inhibitor |
|
|
230 | (1) |
|
6.7.3 Example 3: Section 1.6 Revisited, Part II |
|
|
231 | (2) |
|
|
233 | (12) |
|
|
233 | (5) |
|
6.8.2 Uses of a Lyapunov Function |
|
|
238 | (2) |
|
6.8.3 Phase-Portrait Exercises |
|
|
240 | (1) |
|
|
241 | (4) |
|
|
245 | (3) |
|
|
245 | (1) |
|
6.9.2 The Hartman--Grobman Theorem and Topological Conjugacy |
|
|
246 | (1) |
|
6.9.3 Structural Stability |
|
|
247 | (1) |
|
6.10 Appendix 1: Partial Proof of Theorem 6.6.1 |
|
|
248 | (6) |
|
6.10.1 Reformulation of the IVP as an Integral Equation |
|
|
248 | (2) |
|
6.10.2 Fixed-Point Analysis |
|
|
250 | (2) |
|
6.10.3 The Stable Manifold |
|
|
252 | (1) |
|
6.10.4 Stable Manifolds at Nonhyperbolic Equilibria |
|
|
253 | (1) |
|
6.11 Appendix 2: Center Manifolds and Nonhyperbolicity |
|
|
254 | (5) |
|
|
255 | (1) |
|
|
256 | (3) |
|
|
259 | (68) |
|
|
259 | (8) |
|
|
259 | (2) |
|
7.1.2 Examples of Periodic Solutions |
|
|
261 | (4) |
|
7.1.3 A Leisurely Overview of This Chapter |
|
|
265 | (2) |
|
7.2 Special Behavior in Two Dimensions Mostly |
|
|
267 | (9) |
|
7.2.1 The Poincare--Bendixson Theorem: Minimal Version |
|
|
267 | (1) |
|
7.2.2 Applications of the Theorem |
|
|
268 | (2) |
|
7.2.3 Limit Sets (in Any Dimension) |
|
|
270 | (4) |
|
7.2.4 The Poincare--Bendixson Theorem: Strong Version |
|
|
274 | (1) |
|
7.2.5 Nonexistence: Dulac's Theorem |
|
|
275 | (1) |
|
7.2.6 Section 1.6 Revisited, Part III |
|
|
275 | (1) |
|
7.3 Stability of Periodic Orbits and the Poincare Map |
|
|
276 | (7) |
|
7.3.1 An Eigenvalue Test for Stability |
|
|
276 | (2) |
|
7.3.2 Basics of the Poincare Map |
|
|
278 | (3) |
|
7.3.3 Discrete-Time Dynamics and the Proof of Theorem 7.3.2 |
|
|
281 | (2) |
|
7.4 Stability of the Limit Cycle in the Torqued Pendulum |
|
|
283 | (2) |
|
7.5 Van der Pol with Small β: Weakly Nonlinear Analysis |
|
|
285 | (8) |
|
7.5.1 Two Illustrative Examples of Perturbation Theory |
|
|
286 | (5) |
|
7.5.2 Application to the van der Pol Equation |
|
|
291 | (2) |
|
7.6 Van der Pol with Large β: Singular Perturbation Theory |
|
|
293 | (8) |
|
7.6.1 Two Sources of Guidance |
|
|
293 | (2) |
|
7.6.2 Approximation of the Initial Decay in (7.58) |
|
|
295 | (3) |
|
7.6.3 Phase-Plane Analysis of a Related Equation |
|
|
298 | (3) |
|
|
301 | (1) |
|
7.7 Stability of the van der Pol Limit Cycles |
|
|
301 | (3) |
|
|
302 | (1) |
|
|
303 | (1) |
|
|
304 | (14) |
|
|
304 | (7) |
|
7.8.2 The Poincare--Lindstedt Method |
|
|
311 | (2) |
|
7.8.3 Changes of Variables |
|
|
313 | (3) |
|
|
316 | (2) |
|
|
318 | (3) |
|
7.9.1 Area and Dulac's Theorem |
|
|
318 | (1) |
|
7.9.2 Poincare-Like Maps in Constructing Periodic Solutions |
|
|
319 | (1) |
|
7.9.3 Stable/Unstable Manifolds in Other Contexts |
|
|
320 | (1) |
|
|
321 | (1) |
|
7.10 Appendix: Stabilizing an Inverted Pendulum |
|
|
321 | (6) |
|
7.10.1 A Smidgen of Floquet Theory |
|
|
321 | (2) |
|
7.10.2 Some Stable Solutions of Mathieu's Equation |
|
|
323 | (2) |
|
7.10.3 Application to the Inverted Vibrated Pendulum |
|
|
325 | (2) |
|
8 Bifurcation from Equilibria |
|
|
327 | (76) |
|
8.1 Examples of Pitchfork Bifurcation |
|
|
328 | (6) |
|
8.1.1 Bead on a Rotating Hoop |
|
|
328 | (2) |
|
8.1.2 The Lorenz Equations |
|
|
330 | (2) |
|
8.1.3 A Laterally Supported Inverted Pendulum |
|
|
332 | (2) |
|
8.2 Perspectives on This Chapter |
|
|
334 | (2) |
|
8.2.1 An Outline of the Chapter |
|
|
334 | (1) |
|
8.2.2 A Bifurcation Theorem |
|
|
334 | (2) |
|
8.3 Examples of Transcritical Bifurcation |
|
|
336 | (3) |
|
8.3.1 Section 1.6 Revisited: Part IV |
|
|
336 | (1) |
|
|
337 | (2) |
|
8.4 Examples of Saddle-Node Bifurcation |
|
|
339 | (2) |
|
8.4.1 The Torqued Pendulum |
|
|
339 | (1) |
|
8.4.2 Activator--Inhibitor Systems |
|
|
340 | (1) |
|
8.5 The Lyapunov--Schmidt Reduction |
|
|
341 | (14) |
|
8.5.1 Bare Bones of the Reduction |
|
|
341 | (3) |
|
8.5.2 Proof of Theorem 8.2.2 |
|
|
344 | (4) |
|
8.5.3 One-Dimensional Bifurcation Problems |
|
|
348 | (2) |
|
8.5.4 Exchange of Stability |
|
|
350 | (1) |
|
8.5.5 Symmetry and the Pitchfork Bifurcation |
|
|
351 | (1) |
|
8.5.6 Additional Parameters in Bifurcation Problems |
|
|
352 | (3) |
|
8.6 Steady-State Bifurcation in Two Applications |
|
|
355 | (9) |
|
8.6.1 The Two-Cell Turing Instability |
|
|
355 | (5) |
|
|
360 | (4) |
|
8.7 Examples of Hopf Bifurcation |
|
|
364 | (8) |
|
8.7.1 An Academic Example |
|
|
364 | (2) |
|
8.7.2 The "Repressilator" |
|
|
366 | (2) |
|
8.7.3 Section 1.6 Revisited: Part V |
|
|
368 | (1) |
|
8.7.4 The "Denatured" Morris--Lecar System |
|
|
369 | (3) |
|
8.8 Theoretical Description of Hopf Bifurcation |
|
|
372 | (4) |
|
8.8.1 A Bifurcation Theorem |
|
|
372 | (2) |
|
8.8.2 The Activator-Inhibitor: Extreme Nongeneric Behavior |
|
|
374 | (1) |
|
8.8.3 Sub/Supercriticality in Two Dimensions |
|
|
375 | (1) |
|
|
376 | (19) |
|
|
376 | (4) |
|
8.9.2 Applications of Bifurcation Theory |
|
|
380 | (5) |
|
|
385 | (10) |
|
|
395 | (8) |
|
8.10.1 Comments on Proving the Hopf Bifurcation Theorem |
|
|
395 | (2) |
|
8.10.2 High-Dimensional Bifurcation: Symmetry and Mode Competition |
|
|
397 | (2) |
|
8.10.3 Homeostasis, or "Antibifurcation" |
|
|
399 | (4) |
|
9 Examples of Global Bifurcation |
|
|
403 | (48) |
|
9.1 Homoclinic Bifurcation |
|
|
403 | (6) |
|
9.1.1 An Academic Example |
|
|
403 | (2) |
|
9.1.2 The van der Pol Equation with a Nonlinear Restoring Force |
|
|
405 | (1) |
|
9.1.3 Section 1.6 Revisited: Part VI |
|
|
405 | (3) |
|
9.1.4 Other Examples of Homoclinic and Heteroclinic Bifurcations |
|
|
408 | (1) |
|
9.2 Saddle-Node Bifurcation of Limit Cycles |
|
|
409 | (5) |
|
9.2.1 An Academic Example |
|
|
409 | (1) |
|
9.2.2 The Denatured Morris-Lecar Equation |
|
|
409 | (2) |
|
9.2.3 The Overdamped Torqued Pendulum |
|
|
411 | (3) |
|
9.3 Poincare Maps and Stability Loss of Limit Cycles |
|
|
414 | (1) |
|
9.4 Mutual Annihilation of Two Limit Cycles |
|
|
415 | (2) |
|
9.4.1 An Academic Example |
|
|
415 | (1) |
|
9.4.2 The Denatured Morris-Lecar Equation |
|
|
415 | (2) |
|
9.4.3 Phase-Locking in Coupled Oscillators |
|
|
417 | (1) |
|
9.5 Hopf-Like Bifurcation to an Invariant Torus |
|
|
417 | (3) |
|
9.5.1 An Academic Example |
|
|
417 | (2) |
|
9.5.2 The Periodically Forced van der Pol Equation |
|
|
419 | (1) |
|
9.5.3 Other Examples of Bifurcation to an Invariant Torus |
|
|
420 | (1) |
|
|
420 | (13) |
|
9.6.1 Academic Example 1: Mappings |
|
|
422 | (1) |
|
|
423 | (3) |
|
9.6.3 Academic Example 2: ODEs |
|
|
426 | (2) |
|
9.6.4 A Periodically Forced Pendulum |
|
|
428 | (2) |
|
|
430 | (2) |
|
|
432 | (1) |
|
9.7 The Onset of Chaos in the Lorenz Equations |
|
|
433 | (5) |
|
9.8 Bursting in the Denatured Morris-Lecar Equations |
|
|
438 | (2) |
|
|
440 | (8) |
|
|
440 | (4) |
|
9.9.2 Computations to Support Claims in the Text |
|
|
444 | (2) |
|
9.9.3 Bifurcation in a Quadratic Map |
|
|
446 | (1) |
|
|
447 | (1) |
|
|
448 | (3) |
|
9.10.1 Remarks on Heteroclinic Orbits |
|
|
448 | (1) |
|
9.10.2 Bifurcation in Fluid-Mechanics Problems |
|
|
449 | (1) |
|
|
449 | (2) |
|
|
451 | (36) |
|
10.1 Boundary Value Problems |
|
|
451 | (6) |
|
10.1.1 An Overview Through Examples |
|
|
451 | (4) |
|
10.1.2 Eigenvalue Problems |
|
|
455 | (2) |
|
10.2 Stochastic Population Models |
|
|
457 | (3) |
|
10.3 Numerical Methods: Two Sobering Examples |
|
|
460 | (3) |
|
|
460 | (1) |
|
10.3.2 Unreasonable Behavior of Reasonable Methods |
|
|
461 | (2) |
|
10.4 ODEs on a Torus: Entrainment |
|
|
463 | (4) |
|
10.5 Delay Differential Equations |
|
|
467 | (3) |
|
|
470 | (9) |
|
10.6.1 A One-Dimensional Mapping Model |
|
|
470 | (3) |
|
10.6.2 The Lorenz Equations |
|
|
473 | (6) |
|
|
479 | (5) |
|
|
479 | (3) |
|
|
482 | (2) |
|
|
484 | (3) |
|
|
484 | (2) |
|
10.8.2 A Bit More on Chaos |
|
|
486 | (1) |
|
A Guide to Commonly Used Notation |
|
|
487 | (6) |
|
|
487 | (3) |
|
|
490 | (1) |
|
|
491 | (2) |
|
B Notions from Advanced Calculus |
|
|
493 | (22) |
|
|
493 | (2) |
|
B.2 Pointwise and Uniform Convergence |
|
|
495 | (4) |
|
|
495 | (2) |
|
|
497 | (2) |
|
B.2.3 Convergence of Integrals |
|
|
499 | (1) |
|
B.3 Selected Issues in Vector Calculus |
|
|
499 | (7) |
|
|
500 | (1) |
|
B.3.2 The Implicit Function Theorem |
|
|
501 | (2) |
|
B.3.3 Surfaces and Manifolds |
|
|
503 | (3) |
|
|
506 | (6) |
|
|
506 | (4) |
|
|
510 | (2) |
|
|
512 | (3) |
|
C Notions from Linear Algebra |
|
|
515 | (14) |
|
C.1 How to Work with Jordan Normal Forms |
|
|
515 | (4) |
|
C.2 The Real Canonical Form of a Matrix |
|
|
519 | (1) |
|
C.3 Eigenvalues as Continuous Functions of Matrix Entries |
|
|
520 | (2) |
|
C.4 The Routh--Hurwitz Criterion |
|
|
522 | (2) |
|
|
524 | (5) |
|
|
524 | (2) |
|
|
526 | (3) |
Bibliography |
|
529 | (8) |
Index |
|
537 | |