Atjaunināt sīkdatņu piekrišanu

Organic and Molecular Electronics: From Principles to Practice 2nd edition [Mīkstie vāki]

(University of Durham, UK)
  • Formāts: Paperback / softback, 512 pages, height x width x depth: 249x175x28 mm, weight: 839 g
  • Izdošanas datums: 21-Dec-2018
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 1118879287
  • ISBN-13: 9781118879283
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 101,46 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 512 pages, height x width x depth: 249x175x28 mm, weight: 839 g
  • Izdošanas datums: 21-Dec-2018
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 1118879287
  • ISBN-13: 9781118879283
Citas grāmatas par šo tēmu:

An introduction to the interdisciplinary subject of molecular electronics, revised and updated

The revised second edition of Organic and Molecular Electronics offers a guide to the fabrication and application of a wide range of electronic devices based around organic materials and low-cost technologies. Since the publication of the first edition, organic electronics has greatly progressed, as evidenced by the myriad companies that have been established to explore the new possibilities.

The text contains an introduction into the physics and chemistry of organic materials, and includes a discussion of the means to process the materials into a form (in most cases, a thin film) where they can be exploited in electronic and optoelectronic devices. The text covers the areas of application and potential application that range from chemical and biochemical sensors to plastic light emitting displays. The updated second edition reflects the recent progress in both organic and molecular electronics and:

  • Offers an accessible resource for a wide range of readers
  • Contains a comprehensive text that covers topics including electrical conductivity, optical phenomena, electroactive organic compounds, tools for molecular electronics and much more
  • Includes illustrative examples based on the most recent research
  • Presents problems at the end of each chapter to help reinforce key points

Written mainly for engineering students, Organic and Molecular Electronics: From Principles to Practice provides an updated introduction to the interdisciplinary subjects of organic electronics and molecular electronics with detailed examples of applications. 

Preface xv
Acknowledgements xvii
Symbols and Abbreviations xix
About the Companion Website xxv
1 Scope of Organic and Molecular Electronics 1(18)
1.1 Introduction
1(1)
1.2 Organic Materials for Electronics
2(2)
1.3 Molecular Electronics
4(8)
1.3.1 Evolution of Microelectronics
5(1)
1.3.2 Moore's Laws
6(2)
1.3.3 Beyond Moore
8(4)
1.4 The Biological World
12(1)
1.5 Future Opportunities
13(2)
1.6 Conclusions
15(1)
Problems
15(1)
References
16(1)
Further Reading
17(2)
2 Materials' Foundations 19(44)
2.1 Introduction
20(1)
2.2 Electronic Structure
20(7)
2.2.1 Atomic Structure
20(1)
2.2.2 Electrons in Atoms
20(4)
2.2.3 Filling of Orbitals
24(1)
2.2.4 The Periodic Table
25(2)
2.3 Chemical Bonding
27(8)
2.3.1 Bonding Principles
27(1)
2.3.2 Ionic Bond
28(1)
2.3.3 Covalent Bond
29(4)
2.3.4 Metallic Bonding
33(1)
2.3.5 Van der Waals Bonding
33(1)
2.3.6 Hydrogen Bonding
34(1)
2.4 Bonding in Organic Compounds
35(8)
2.4.1 Hybridized Orbitals
35(1)
2.4.2 Isomers
36(4)
2.4.3 Double and Triple Bonds
40(3)
2.5 Crystalline and Noncrystalline Materials
43(10)
2.5.1 States of Matter
43(1)
2.5.2 Phase Changes and Thermodynamic Equilibrium
44(1)
2.5.3 The Crystal Lattice
45(1)
2.5.4 Crystal Systems
45(2)
2.5.5 Miller Indices
47(1)
2.5.6 Distance between Crystal Planes
48(1)
2.5.7 Defects
48(4)
2.5.8 Amorphous Solids
52(1)
2.6 Polymers
53(5)
2.6.1 Molecular Weight
54(1)
2.6.2 Polymer Structure
55(1)
2.6.3 Polymer Crystallinity
56(2)
2.7 Soft Matter: Emulsions, Foams, and Gels
58(1)
2.8 Diffusion
59(1)
Problems
60(1)
Reference
60(1)
Further Reading
60(3)
3 Electrical Conductivity 63(58)
3.1 Introduction
64(1)
3.2 Classical Theory
64(7)
3.2.1 Electrical Conductivity
65(1)
3.2.2 Ohm's Law
66(1)
3.2.3 Charge Carrier Mobility
67(2)
3.2.4 Fermi Energy
69(2)
3.3 Energy Bands in Solids
71(20)
3.3.1 Quantum Mechanical Foundations
71(6)
3.3.2 Kronig-Penney Model
77(4)
3.3.3 Conductors, Semiconductors, and Insulators
81(1)
3.3.4 Electrons and Holes
82(2)
3.3.5 Intrinsic and Extrinsic Conduction
84(4)
3.3.6 Quantum Wells
88(1)
3.3.7 Disordered Semiconductors
89(1)
3.3.8 Conductivity in Low-Dimensional Solids
90(1)
3.4 Organic Compounds
91(14)
3.4.1 Band Structure
91(9)
3.4.2 Doping
100(2)
3.4.3 Solitons, Polarons, and Bipolarons
102(1)
3.4.4 Superconductivity
103(2)
3.5 Low-Frequency Conductivity
105(8)
3.5.1 Electronic Versus Ionic Conductivity
105(1)
3.5.2 Quantum Mechanical Tunnelling
106(1)
3.5.3 Variable Range Hopping
107(2)
3.5.4 Fluctuation-induced Tunnelling
109(1)
3.5.5 Space-Charge Injection
110(1)
3.5.6 Schottky and Poole-Frenkel Effects
111(2)
3.6 Conductivity at High Frequencies
113(5)
3.6.1 Complex Permittivity
113(3)
3.6.2 Impedance Spectroscopy
116(2)
Problems
118(1)
References
118(2)
Further Reading
120(1)
4 Optical Phenomena 121(36)
4.1 Introduction
121(1)
4.2 Electromagnetic Radiation
122(1)
4.3 Refractive Index
123(4)
4.3.1 Permittivity Tensor
124(1)
4.3.2 Linear and Nonlinear Optics
125(2)
4.4 Interaction of EM Waves with Organic Molecules
127(13)
4.4.1 Absorption Processes
127(4)
4.4.2 Aggregate Formation
131(1)
4.4.3 Excitons
132(1)
4.4.4 Effect of Electric Fields on Absorption
133(1)
4.4.5 Emission Processes
134(4)
4.4.6 Energy Transfer
138(2)
4.5 Transmission and Reflection from Interfaces
140(5)
4.5.1 Laws of Reflection and Refraction
140(1)
4.5.2 Fresnel Equations
140(2)
4.5.3 Ellipsometry
142(1)
4.5.4 Thin Films
142(2)
4.5.5 Transmission through Conductive Thin Films
144(1)
4.6 Waveguiding
145(1)
4.7 Surface Plasmons
146(5)
4.7.1 The Evanescent Field
147(1)
4.7.2 Surface Plasmon Resonance
148(3)
4.8 Photonic Crystals
151(2)
4.8.1 Subwavelength Optics
153(2)
Problems
155(1)
References
155(1)
Further Reading
156(1)
5 Electroactive Organic Compounds 157(40)
5.1 Introduction
157(1)
5.2 Selected Topics in Chemistry
158(8)
5.2.1 Moles and Molecules
158(1)
5.2.2 Acids and Bases
158(2)
5.2.3 Ions
160(1)
5.2.4 Solvents
160(3)
5.2.5 Functional Groups
163(1)
5.2.6 Aromatic Compounds
163(2)
5.2.7 Material Purity
165(1)
5.3 Conductive Polymers
166(4)
5.4 Charge-Transfer Complexes
170(3)
5.5 Graphene, Fullerenes, and Nanotubes
173(7)
5.5.1 Graphene
173(2)
5.5.2 Fullerenes
175(2)
5.5.3 Carbon Nanotubes
177(3)
5.6 Piezoelectricity, Pyroelectricity, and Ferroelectricity
180(5)
5.6.1 Basic Principles
180(2)
5.6.2 Organic Piezoelectric, Pyroelectric, and Ferroelectric Compounds
182(3)
5.7 Magnetic Materials
185(1)
5.7.1 Basic Principles
185(7)
5.7.2 Organic Magnets
192(2)
Problems
194(1)
References
194(2)
Further Reading
196(1)
6 Tools for Molecular Electronics 197(24)
6.1 Introduction
197(1)
6.2 Direct Imaging
198(4)
6.2.1 Optical Microscopy
198(2)
6.2.2 Electron Microscopy
200(2)
6.3 X-Ray Reflection
202(4)
6.3.1 Electron Density Profile
205(1)
6.3.2 Kiessig Fringes
205(1)
6.3.3 In-plane Measurements
205(1)
6.4 Neutron Reflection
206(1)
6.5 Electron Diffraction
206(2)
6.6 Infrared Spectroscopy
208(5)
6.6.1 Raman Scattering
212(1)
6.7 Surface Analytical Techniques
213(1)
6.8 Scanning Probe Microscopies
214(3)
6.9 Film Thickness Measurements
217(1)
Problems
218(1)
References
219(1)
Further Reading
220(1)
7 Thin Film Processing and Device Fabrication 221(44)
7.1 Introduction
221(1)
7.2 Established Deposition Methods
222(17)
7.2.1 Spin-coating
222(2)
7.2.2 Physical Vapour Deposition
224(7)
7.2.3 Chemical Vapour Deposition
231(1)
7.2.4 Electrochemical Methods
232(1)
7.2.5 Inkjet Printing
233(2)
7.2.6 Spray-coating
235(1)
7.2.7 Sol-Gel Processing
236(2)
7.2.8 Other Techniques
238(1)
7.3 Molecular Architectures
239(14)
7.3.1 Langmuir-Blodgett Technique
239(9)
7.3.2 Chemical Self-Assembly
248(1)
7.3.3 Electrostatic Layer-by-Layer Deposition
248(5)
7.4 Micro-and Nanofabrication
253(7)
7.4.1 Photolithography
253(1)
7.4.2 Nanometre Pattern Definition
254(1)
7.4.3 Nanoimprint Lithography
255(1)
7.4.4 Scanning Probe Manipulation
256(2)
7.4.5 Dip-Pen Nanolithography
258(1)
7.4.6 Gravure Printing
259(1)
7.4.7 Other Methods
259(1)
Problems
260(1)
References
260(3)
Further Reading
263(2)
8 Liquid Crystals and Devices 265(22)
8.1 Introduction
265(1)
8.2 Liquid Crystal Phases
266(5)
8.2.1 Thermotropic Liquid Crystals
266(3)
8.2.2 Lyotropic Liquid Crystals
269(2)
8.3 Liquid Crystal Polymers
271(2)
8.4 Display Devices
273(6)
8.4.1 Birefringence
273(1)
8.4.2 Freedericksz Transition
274(1)
8.4.3 Twisted Nematic Display
275(2)
8.4.4 Passive and Active Addressing
277(1)
8.4.5 Full-colour Displays
278(1)
8.4.6 Super-twisted Nematic Display
278(1)
8.5 Ferroelectric Liquid Crystals
279(2)
8.6 Polymer-dispersed Liquid Crystals
281(1)
8.7 Liquid Crystal Lenses
282(1)
8.8 Other Application Areas
283(1)
Problems
284(1)
References
285(1)
Further Reading
286(1)
9 Plastic Electronics 287(50)
9.1 Introduction
288(1)
9.2 Organic Diodes
288(4)
9.2.1 Schottky Diode
288(4)
9.2.2 Ohmic Contacts
292(1)
9.3 Metal-Insulator-Semiconductor Structures
292(3)
9.3.1 Idealized MIS Devices
292(2)
9.3.2 Effect of Real Surfaces
294(1)
9.3.3 Organic MIS Structures
294(1)
9.4 Organic Field Effect Transistors
295(6)
9.5 Organic Integrated Circuits
301(2)
9.5.1 Radiofrequency Identification Tags
302(1)
9.6 Transparent Conducting Films
303(1)
9.7 Organic Light-emitting Devices
304(17)
9.7.1 Device Efficiency
308(2)
9.7.2 Device Architectures
310(4)
9.7.3 Increasing the Light Output
314(3)
9.7.4 Full-colour Displays
317(1)
9.7.5 OLED Lighting
318(1)
9.7.6 Light-emitting Electrochemical Cells
319(1)
9.7.7 Organic Light-emitting Transistors
319(2)
9.7.8 Electronic Paper
321(1)
9.8 Organic Photovoltaic Devices
321(7)
9.8.1 Photovoltaic Principles
322(1)
9.8.2 Bulk Heterojunctions
323(3)
9.8.3 Dye-sensitized Solar Cell
326(1)
9.8.4 Luminescent Concentrator
327(1)
9.9 Other Application Areas
328(3)
9.9.1 Conductive Coatings
328(1)
9.9.2 Batteries, Supercapacitors, and Fuel Cells
329(2)
Problems
331(1)
References
332(4)
Further Reading
336(1)
10 Chemical Sensors and Physical Actuators 337(36)
10.1 Introduction
337(1)
10.2 Sensing Systems
338(1)
10.3 Definitions
339(2)
10.4 Chemical Sensors
341(19)
10.4.1 Electrochemical Cells
342(3)
10.4.2 Resistive Gas Sensors
345(6)
10.4.3 Dielectric Sensors
351(2)
10.4.4 Acoustic Devices
353(3)
10.4.5 Optical Sensors
356(4)
10.5 Biological Olfaction
360(2)
10.6 Electronic Noses
362(1)
10.7 Physical Sensors and Actuators
363(6)
10.7.1 Touch Sensors
363(1)
10.7.2 Polymer Actuators
364(2)
10.7.3 Lab-on-a-Chip
366(3)
10.8 Wearable Electronics
369(1)
Problems
369(1)
References
370(1)
Further Reading
371(2)
11 Molecular and Nanoscale Electronics 373(48)
11.1 Introduction
374(1)
11.2 Nanosystems
374(2)
11.2.1 Scaling Laws
374(1)
11.2.2 Interatomic Forces
375(1)
11.3 Engineering Materials at the Molecular Level
376(5)
11.3.1 Polar Materials
376(2)
11.3.2 Nonlinear Optical Materials
378(2)
11.3.3 Photonic Crystals
380(1)
11.4 Molecular Device Architectures
381(4)
11.4.1 Break Junctions
384(1)
11.5 Molecular Rectification
385(2)
11.6 Electronic Switching and Memory Phenomena
387(8)
11.6.1 Resistive Bistable Devices
388(2)
11.6.2 Flash Memories
390(1)
11.6.3 Ferroelectric RAMs
391(2)
11.6.4 Spintronics
393(1)
11.6.5 Three-dimensional Architectures
394(1)
11.7 Single-electron Devices
395(2)
11.8 Optical and Chemical Switches
397(5)
11.8.1 Fluorescence Switching
398(1)
11.8.2 Photochromic Systems
398(3)
11.8.3 Chemical Control
401(1)
11.9 Nanomagnetics
402(2)
11.10 Nanotube and Graphene Electronics
404(3)
11.11 Molecular Actuation
407(3)
11.11.1 Dynamically Controllable Surfaces
407(1)
11.11.2 Rotaxanes
408(1)
11.11.3 Optical Tweezers
409(1)
11.12 Molecular Logic Circuits
410(2)
11.13 Computing Architectures
412(2)
11.14 Quantum Computing
414(1)
11.15 Evolvable Electronics
415(1)
Problems
416(1)
References
416(4)
Further Reading
420(1)
12 Bioelectronics 421(44)
12.1 Introduction
422(1)
12.2 Biological Building Blocks
422(7)
12.2.1 Amino Acids and Peptides
422(1)
12.2.2 Proteins
423(3)
12.2.3 Enzymes
426(1)
12.2.4 Carbohydrates
426(2)
12.2.5 Lipids
428(1)
12.3 Nucleotides
429(4)
12.3.1 Bases
430(1)
12.3.2 DNA
430(2)
12.3.3 RNA
432(1)
12.3.4 ATP, ADP
432(1)
12.4 Cells
433(1)
12.5 Genetic Coding
434(4)
12.5.1 Replication, Transcription, and Translation
434(4)
12.6 The Biological Membrane
438(5)
12.6.1 Transport Across the Membrane
439(4)
12.7 Neurons
443(2)
12.8 Biosensors
445(4)
12.8.1 Biocatalytic Sensors
446(1)
12.8.2 Bioaffinity Sensors
447(2)
12.9 DNA Electronics
449(1)
12.10 Photobiology
450(8)
12.10.1 Bacteriorhodopsin
450(2)
12.10.2 Photosynthesis
452(6)
12.11 Molecular Motors
458(3)
12.11.1 Nature's Motors
458(1)
12.11.2 Artificial Motors
459(2)
Problems
461(1)
References
461(2)
Further Reading
463(2)
Appendix 465(4)
Index 469
MICHAEL C. PETTY, Emeritus Professor of Engineering, University of Durham, UK. Professor Petty has published extensively in the areas of organic electronics and molecular electronics and has lectured worldwide in these subjects. He was formerly President of the International Society for Molecular Electronics and BioComputing, and was a previous Chairman of the School of Engineering at Durham University.