Atjaunināt sīkdatņu piekrišanu

E-grāmata: Organic Semiconductors for Optoelectronics [Wiley Online]

Edited by
Citas grāmatas par šo tēmu:
  • Wiley Online
  • Cena: 198,60 €*
  • * this price gives unlimited concurrent access for unlimited time
Citas grāmatas par šo tēmu:

Comprehensive coverage of organic electronics, including fundamental theory, basic properties, characterization methods, device physics, and future trends 

Organic semiconductor materials have vast commercial potential for a wide range of applications, from self-emitting OLED displays and solid-state lighting to plastic electronics and organic solar cells. As research in organic optoelectronic devices continues to expand at an unprecedented rate, organic semiconductors are being applied to flexible displays, biosensors, and other cost-effective green devices in ways not possible with conventional inorganic semiconductors.  

Organic Semiconductors for Optoelectronics is an up-to-date review of the both the fundamental theory and latest research and development advances in organic semiconductors. Featuring contributions from an international team of experts, this comprehensive volume covers basic properties of organic semiconductors, characterization techniques, device physics, and future trends in organic device development. Detailed chapters provide key information on the device physics of organic field-effect transistors, organic light-emitting diodes, organic solar cells, organic photosensors, and more. This authoritative resource: 

  • Provides a clear understanding of the optoelectronic properties of organic semiconductors and their influence to overall device performance 
  • Explains the theories behind relevant mechanisms in organic semiconducting materials and in organic devices 
  • Discusses current and future trends and challenges in the development of organic optoelectronic devices 
  • Reviews electronic properties, device mechanisms, and characterization techniques of organic semiconducting materials 
  • Covers theoretical concepts of optical properties of organic semiconductors including fluorescent, phosphorescent, and thermally-assisted delayed fluorescent emitters 

An important new addition to the Wiley Series in Materials for Electronic & Optoelectronic Applications, Organic Semiconductors for Optoelectronics bridges the gap between advanced books and undergraduate textbooks on semiconductor physics and solid-state physics. It is essential reading for academic researchers, graduate students, and industry professionals involved in organic electronics, materials science, thin film devices, and optoelectronics research and development. 

List of Contributors
xiii
Series Preface xv
Preface xvii
1 Electronic Structures of Organic Semiconductors
1(40)
Kazuyoshi Tanaka
1.1 Introduction
1(1)
1.2 Electronic Structures of Organic Crystalline Materials
2(14)
1.2.1 Free-Electron Picture
3(1)
1.2.2 Tight-Binding Framework
4(1)
1.2.2.1 Formalism
4(3)
1.2.2.2 Simple Example
7(2)
1.2.3 Electronic Properties Based on the Electronic Structure
9(1)
1.2.3.1 Characteristics of the Energy Band
9(2)
1.2.3.2 Band Gap (ΔEg)
11(1)
1.2.3.3 Fermi Energy (εF) and Fermi Level (EF)
11(1)
1.2.3.4 Band Width (W)
12(1)
1.2.3.5 Ionization Potential (Ip)
12(1)
1.2.3.6 Electron Affinity (Ea)
13(1)
1.2.3.7 Density of States (DOS)
13(1)
1.2.3.8 Effective Mass (m*)
14(1)
1.2.3.9 CO Pattern
14(1)
1.2.3.10 Electron Density and Bond Order
14(1)
1.2.3.11 Total Energy of ID Crystal (Etot)
15(1)
1.2.3.12 Mobility
15(1)
1.3 Injection of Charge Carriers
16(10)
1.3.1 Organic Conductive Polymers
17(2)
1.3.2 Organic Charge-Transfer Crystals
19(7)
1.4 Transition from the Conductive State
26(4)
1.4.1 Peierls Transition
26(1)
1.4.1.1 Polyacetylene
27(1)
1.4.1.2 TTF-TCNQ
28(1)
1.4.2 Competition of Spin Density Wave and Superconductivity
29(1)
1.5 Electronic Structure of Organic Amorphous Solid
30(7)
1.5.1 Examination of Electronic Structures
31(1)
1.5.1.1 Direct Calculation of the Local Structure
32(1)
1.5.1.2 Effective-Medium Approximation
33(1)
1.5.2 Localized Levels and Mobility Edge
33(1)
1.5.3 Hopping Process
33(1)
1.5.3.1 Hopping Process between the Nearest Neighbors
34(2)
1.5.3.2 Variable Range Hopping (VRH)
36(1)
1.5.3.3 Hopping Process via the Dopants
37(1)
1.6 Conclusion
37(4)
Acknowledgment
38(1)
References
38(3)
2 Electronic Transport in Organic Semiconductors
41(28)
Hiroyoshi Naito
2.1 Introduction
41(1)
2.2 Amorphous Organic Semiconductors
41(3)
2.2.1 Measurements of Transport Properties
43(1)
2.2.1.1 Time-of-Flight Transient Photocurrent Experiment
43(1)
2.3 Experimental Features of Electronic Transport Properties
44(1)
2.4 Charge Carrier Transport Models
44(8)
2.4.1 Multiple Trapping Model
45(3)
2.4.2 Gaussian Disorder Model (GDM)
48(1)
2.4.3 Correlated Disorder Model (CDM)
49(1)
2.4.4 GDM vs. CDM
49(1)
2.4.5 Polaronic Transport
50(1)
2.4.6 Transport Energy
50(1)
2.4.7 Analytical Approach to Hopping Transport
51(1)
2.4.8 Functional Forms of Localized State Distributions
52(1)
2.5 Prediction of Transport Properties in Amorphous Organic Semiconductors
52(1)
2.6 Polycrystalline Organic Semiconductors
53(6)
2.6.1 Transport in Polycrystalline Semiconductors and Technological Importance of Polycrystalline Silicon
53(2)
2.6.2 Field-Effect Mobility in Organic Polycrystalline Semiconductors
55(3)
2.6.3 Performance of Field-Effect Transistors with Polycrystalline Organic Semiconductors
58(1)
2.7 Single-Crystalline Organic Semiconductors
59(6)
2.7.1 Band Conduction in Single-Crystalline Organic Semiconductors
61(3)
2.7.2 Performance of Field-Effect Transistors with Single Crystalline Organic Semiconductors
64(1)
2.8 Concluding Remarks
65(4)
Acknowledgment
65(1)
References
65(4)
3 Theory of Optical Properties of Organic Semiconductors
69(24)
Jai Singh
Monishka Rita Narayan
David Ompong
3.1 Introduction
69(1)
3.2 Photoexcitation and Formation of Excitons
70(13)
3.2.1 Photoexcitation of Singlet Excitons due to Exciton-photon Interaction
71(3)
3.2.2 Excitation of Triplet Excitons
74(1)
3.2.2.1 Direct Excitation to Triplet States Through Exciton-Spin-Orbit-Photon Interaction
74(5)
3.2.2.2 Indirect Excitation of Triplet Excitons Through Intersystem Crossing and Exciton-Spin-Orbit-Phonon Interaction
79(4)
3.3 Exciton up Conversion
83(2)
3.4 Exciton Dissociation
85(8)
3.4.1 Process of Conversion from Frenkel to CT Excitons
88(1)
3.4.2 Dissociation of CT Excitons
89(1)
References
90(3)
4 Light Absorption and Emission Properties of Organic Semiconductors
93(44)
Takashi Kobayashi
Takashi Nagase
Hiroyoshi Naito
4.1 Introduction
93(1)
4.2 Electronic States in Organic Semiconductors
94(8)
4.2.1 Fluorescence Emitters
95(2)
4.2.2 Phosphorescence Emitters
97(2)
4.2.3 TADF Emitters
99(1)
4.2.4 It Conjugated Polymers
100(2)
4.3 Determination of Excited-state Structure Using Nonlinear Spectroscopy
102(13)
4.3.1 Background
103(3)
4.3.2 Experimental Technique
106(1)
4.3.2.1 E.A
106(1)
4.3.2.2 TPE
107(2)
4.3.3 Experimental Results
109(1)
4.3.3.1 DE2
109(2)
4.3.3.2 Ir(ppy)3
111(2)
4.3.3.3 PFO
113(2)
4.4 Decay Mechanism of Excited States
115(17)
4.4.1 Background
115(2)
4.4.2 Experimental Technique
117(1)
4.4.2.1 Time-resolved PL Measurements
117(3)
4.4.2.2 PLQE Measurements
120(1)
4.4.3 Experimental Results
121(1)
4.4.3.1 PFO
121(2)
4.4.3.2 Ir(ppy)3
123(4)
4.4.3.3 4CzIPN
127(5)
4.5 Summary
132(5)
Acknowledgement
132(1)
References
132(5)
5 Characterization of Transport Properties of Organic Semiconductors Using Impedance Spectroscopy
137(24)
Kenichiro Takagi
Hiroyoshi Naito
5.1 Introduction
137(1)
5.2 Charge-Carrier Mobility
138(10)
5.2.1 Methods for Mobility Measurements
138(1)
5.2.2 Theoretical Basis for Determination of Charge-Carrier Mobility
139(2)
5.2.3 Determination of Charge-Carrier Mobility
141(1)
5.2.4 Influence of Barrier Height for Carrier Injection on Determination of Charge-Carrier Mobility
142(1)
5.2.5 Influence of Contact Resistance on Determination of Charge-Carrier Mobility
143(1)
5.2.6 Influence of Localized States on Determination of Charge-Carrier Mobility
144(2)
5.2.7 Demonstration of Determination of Charge-Carrier Mobility
146(2)
5.3 Localized-State Distributions
148(5)
5.3.1 Methods for Localized-State Measurements
148(1)
5.3.2 Theoretical Basis for Determination of Localized-State Distribution
149(1)
5.3.3 Demonstration of Determination of Localized-State Distribution
150(3)
5.4 Lifetime
153(3)
5.4.1 Methods for Deep-Trapping-Lifetime Measurements
153(1)
5.4.2 Determination of Deep-Trapping-Lifetime using the Proposed Method
153(1)
5.4.3 Validity of the Proposed Method
154(1)
5.4.4 Demonstration of Determination of Deep-Trapping-Lifetime
155(1)
5.5 IS in OLEDs and OPVs
156(1)
5.6 Conclusions
156(5)
Acknowledgments
157(1)
References
157(4)
6 Time of-Flight Method for Determining the Drift Mobility in Organic Semiconductors
161(18)
Masahiro Funahashi
6.1 Introduction
161(1)
6.2 Principle of the TOF Method
162(10)
6.2.1 Carrier Mobility and Transient Photocurrent
162(1)
6.2.2 Standard Setup of the TOF Measurement
163(1)
6.2.3 Sample Preparation
164(1)
6.2.4 Current Mode and Charge Mode
165(2)
6.2.5 Instructions in the TOF Measurements
167(5)
6.3 Information Obtained From the TOF Experiments
172(1)
6.4 Techniques Related to the TOF Measurement
173(4)
6.4.1 Xerographic TOF Method
173(1)
6.4.2 Lateral TOF Method
174(1)
6.4.3 TOF Measurements Under Pulse Voltage Application
175(1)
6.4.4 Dark Injection Space Charge-Limited Transient Current Method
175(2)
6.5 Conclusion
177(2)
References
177(2)
7 Microwave and Terahertz Spectroscopy
179(22)
Akinori Saeki
7.1 Introduction
179(2)
7.2 Instrumental Setup of Time-Resolved Gigahertz and Terahertz Spectroscopies
181(2)
7.3 Theory of Complex Microwave Conductivity in a Resonant Cavity
183(2)
7.4 Microwave Spectroscopy for Organic Solar Cells
185(2)
7.5 Frequency-Modulation: Interplay of Free and Shallowly-Trapped Electrons
187(8)
7.6 Organic-Inorganic Perovskite
195(2)
7.7 Conclusions
197(4)
Acknowledgement
198(1)
References
198(3)
8 Intrinsic and Extrinsic Transport in Crystalline Organic Semiconductors: Electron-Spin-Resonance Study for Characterization of Localized States
201(24)
Andrey S. Mishchenko
8.1 Intrinsic and Extrinsic Transport in Crystalline Organic Semiconductors
203(3)
8.2 Electron Spin Resonance Study for Characterization of Localized States
206(13)
8.2.1 Introduction into ESR Study
206(2)
8.2.2 ESR Spectra of Trapped Carriers
208(1)
8.2.2.1 ESR Spectra for Single Molecule and a Cluster Containing Several Molecules
208(1)
8.2.2.2 ESR Spectra for a Trap in Crystal
209(1)
8.2.2.3 ESR Spectra for Several Kinds of Traps
210(1)
8.2.3 From ESR Spectrum to Trap Distribution Over Degree of Localization
211(1)
8.2.3.1 Method to Solve Inverse Problem
211(1)
8.2.3.2 Tests of SOM Stability Against the Noise in Experimental Data
212(1)
8.2.3.3 Practical Implementation of Method: Distribution of Traps in Pentacene TFT
213(1)
8.2.3.4 Reliability of Trap Distribution Result
214(1)
8.2.4 Transformation From Spatial Distribution to Energy Distribution
214(1)
8.2.4.1 Trap Model: 2D Holstein Polaron and On-Site Attractive Center
215(1)
8.2.4.2 Energy Distribution of Traps in Pentacene TFTs
216(1)
8.2.5 Discussion
217(1)
8.2.6 Summary of Trap Study
218(1)
8.3 Conclusion
219(6)
Acknowledgments
219(1)
References
220(5)
9 Second Harmonic Generation Spectroscopy
225(20)
Takaaki Manaka
Mitsumasa Iwamoto
9.1 Introduction
225(1)
9.2 Basics of the EFISHG
226(8)
9.2.1 Macroscopic Origin of the SHG
226(2)
9.2.2 Microscopic Description of the SHG
228(1)
9.2.3 EFISHG Measurements
229(2)
9.2.4 Evaluation of In-plane Electric Field in OFET
231(1)
9.2.5 Direct Imaging of Carrier Motion in OFET
232(2)
9.3 Some Application of the TRM-SHG to the OFET
234(6)
9.3.1 Trap Effect
234(3)
9.3.2 Metal Electrode Dependence
237(2)
9.3.3 Anisotropic Carrier Transport
239(1)
9.4 Application of the TRM-SHG to OLED
240(2)
9.5 Conclusions
242(3)
Acknowledgement
243(1)
References
243(2)
10 Device Physics of Organic Field-effect Transistors
245(28)
Hiroyuki Matsui
10.1 Organic Field-Effect Transistors (OFETs)
245(28)
10.1.1 Structure of OFETs
245(3)
10.1.2 Operation Principles of OFETs
248(3)
10.1.3 Carrier Traps
251(1)
10.1.4 Transport Models in Channels
252(1)
10.1.4.1 Band Transport Model
253(3)
10.1.4.2 Multiple Trap and Release Model
256(3)
10.1.4.3 Hopping Model
259(1)
10.1.4.4 Dynamic Disorder Model
260(3)
10.1.4.5 Grain Boundary Model
263(1)
10.1.5 Carrier Injection at Source and Drain Electrodes
264(2)
10.1.5.1 Transmission Line Method (TLM)
266(1)
10.1.5.2 Four-Terminal Measurement
267(1)
10.1.5.3 Effect of Contact Resistance on Apparent Mobility
268(2)
References
270(3)
11 Spontaneous Orientation Polarization in Organic Light-Emitting Diodes and its Influence on Charge Injection, Accumulation, and Degradation Properties
273(22)
Yutaka Noguchi
Hisao Ishii
Lars Jager
Tobias D. Schmidt
Wolfgang Briitting
11.1 Introduction
273(2)
11.2 Interface Charge Model
275(2)
11.3 Interface Charge in Bilayer Devices
277(4)
11.4 Charge Injection Property
281(2)
11.5 Degradation Property
283(7)
11.6 Conclusions
290(5)
Acknowledgement
291(1)
References
292(3)
12 Advanced Molecular Design for Organic Light Emitting Diode Emitters Based on Horizontal Molecular Orientation and Thermally Activated Delayed Fluorescence
295(12)
Li Zhao
DaeHyeon Kim
Jean-Charles Ribierre
Takeshi Komino
Chihaya Adachi
12.1 Introduction
295(4)
12.2 Molecular Orientation in TADF OLEDs
299(1)
12.3 Molecular Orientation in Solution Processed OLEDs
300(7)
References
304(3)
13 Organic Field Effect Transistors Integrated Circuits
307(14)
Mayumi Uno
13.1 Introduction
307(1)
13.2 Organic Fundamental Circuits
308(4)
13.2.1 Inverter for Logic Components
308(2)
13.2.2 Logic NAND and NOR Gates
310(1)
13.2.3 Active Matrix Elements
310(2)
13.3 High Performance Organic Transistors Applicable to Flexible Logic Circuits
312(3)
13.3.1 Reducing the Contact Resistance
313(1)
13.3.2 Downscaling the Channel Sizes and Vertical Transistors
314(1)
13.3.3 High-Speed Organic Transistors
314(1)
13.4 Integrated Organic Circuits
315(2)
13.4.1 RFID Tag Applications
316(1)
13.4.2 Sensor Readout Circuits
317(1)
13.5 Conclusions
317(4)
References
318(3)
14 Naphthobisthiadiazole-Based Semiconducting Polymers for High-Efficiency Organic Photovoltaics
321(22)
Itaru Osaka
Kazuo Takimiya
14.1 Introduction
321(1)
14.2 Semiconducting Polymers Based on Naphthobisthiadiazole
322(2)
14.3 Quaterthiophene--NTz Polymer: Comparison with the Benzothiadiazole Analogue
324(3)
14.4 Naphthodithiophene--NTz Polymer: Importance of the Backbone Orientation
327(5)
14.5 Optimization of PNTz4T Cells: Distribution of Backbone Orientation vs Cell Structure
332(3)
14.6 Thiophene, Thiazolothiazole-NTz Polymers: Higly Thermally Stabe Solar Cells
335(4)
14.7 Summary
339(4)
References
340(3)
15 Plasmonics for Light-Emitting and Photovoltaic Devices
343(16)
Koichi Okamoto
15.1 Optical Properties of the Surface Plasmon Resonance
343(2)
15.2 High-Efficiency Light Emissions using Plasmonics
345(2)
15.3 Mechanism for the SP Coupled Emissions
347(2)
15.4 Quantum Efficiencies and Spontaneous Emission Rates
349(1)
15.5 Applications for Organic Materials
350(2)
15.6 Device Application for Light-Emitting Devices
352(2)
15.7 Applications to High-Efficiency Solar Cells
354(5)
Acknowledgements
356(1)
References
356(3)
Index 359
Hiroyoshi Naito, Professor in the Department of Physics and Electronics at Osaka Prefecture University, Japan, where he has taught for over 30 years. He has authored and co-authored more than 300 journal publications, contributed several book chapters, and has attended numerous conferences as an invited speaker. His research is focused on the characterization of optical and electronic properties of organic semiconductors and the device physics of organic optoelectronic devices.

Series Editors Arthur Willoughby University of Southampton, Southampton, UK. Peter Capper Ex]Leonardo MW Ltd, Southampton, UK. Safa Kasap University of Saskatchewan, Saskatoon, Canada.