Preface |
|
ix | |
Author |
|
xi | |
1 Solar Cells and Their Generations |
|
1 | (54) |
|
|
1 | (2) |
|
|
3 | (1) |
|
1.3 Solar Cells and Their Generations |
|
|
3 | (26) |
|
1.3.1 First Generation of Solar Cells |
|
|
3 | (5) |
|
1.3.1.1 Crystalline Silicon (c-Si) Solar Cells |
|
|
4 | (2) |
|
1.3.1.2 Polycrystalline (Poly-c) Si Solar Cells |
|
|
6 | (2) |
|
1.3.2 Second Generation of Solar Cells |
|
|
8 | (7) |
|
1.3.2.1 Amorphous Si (a-Si) Solar Cells |
|
|
8 | (3) |
|
1.3.2.2 Copper Indium Gallium Diselenide (CIGS) Solar Cells |
|
|
11 | (2) |
|
1.3.2.3 Cadmium Telluride (CdTe) Solar Cells |
|
|
13 | (2) |
|
1.3.3 Third Generation of Solar Cells |
|
|
15 | (8) |
|
1.3.3.1 Multijunction Solar Cells Based on IIIV Compound Semiconductors |
|
|
15 | (2) |
|
1.3.3.2 Quantum Dot Solar Cells (QDSCs) |
|
|
17 | (2) |
|
1.3.3.3 Dye-Sensitized Solar Cells (DSSCs) |
|
|
19 | (2) |
|
1.3.3.4 Organic Solar Cells (OSCs) |
|
|
21 | (2) |
|
1.3.4 Fourth Generation of Solar Cells |
|
|
23 | (6) |
|
1.3.4.1 OrganicInorganic Hybrid Solar Cells |
|
|
23 | (2) |
|
1.3.4.2 Perovskite Solar Cells |
|
|
25 | (4) |
|
1.4 Performance Analysis of a Solar Cell |
|
|
29 | (10) |
|
1.4.1 Solar Spectrum and Irradiance |
|
|
29 | (3) |
|
1.4.2 Power Conversion Efficiency (PCE) |
|
|
32 | (5) |
|
1.4.3 Incident Photon to Converted Electron (IPCE) Efficiency |
|
|
37 | (2) |
|
|
39 | (3) |
|
1.6 Utilization of Solar Modules for Different Applications |
|
|
42 | (1) |
|
1.7 Energy Payback Time (EPBT) and Carbon Footprint |
|
|
43 | (2) |
|
1.8 Current State of the Art |
|
|
45 | (1) |
|
|
46 | (9) |
2 Degradation in Different Solar Cell Technologies |
|
55 | (18) |
|
|
55 | (1) |
|
2.2 How Different Solar Cells Degrade |
|
|
55 | (10) |
|
2.2.1 Degradation in Silicon (Si) Wafer Solar Cells |
|
|
56 | (1) |
|
2.2.2 Degradation in Hydrogenated Amorphous Silicon (a-Si:H) Solar Cells |
|
|
56 | (3) |
|
2.2.3 Degradation in Copper Indium Gallium Diselenide (CIGS) Solar Cells |
|
|
59 | (1) |
|
2.2.4 Degradation in Cadmium Telluride (CdTe) Solar Cells |
|
|
60 | (2) |
|
2.2.5 Degradation in IIIV Multijunction Solar Cells |
|
|
62 | (1) |
|
2.2.6 Degradation in Dye-Sensitized Solar Cells (DSSCs) |
|
|
62 | (2) |
|
2.2.7 Degradation in Organic Solar Cells (OSCs) |
|
|
64 | (1) |
|
2.3 Degradation in Solar Modules |
|
|
65 | (3) |
|
2.3.1 Short-Circuit and Open-Circuit Failure |
|
|
65 | (1) |
|
|
65 | (2) |
|
2.3.3 Encapsulant Failure |
|
|
67 | (1) |
|
2.3.4 Cracking of Solar Cells and Solar Modules |
|
|
68 | (1) |
|
|
68 | (5) |
3 Organic Solar Cells |
|
73 | (64) |
|
|
73 | (2) |
|
3.2 Organic Semiconductors |
|
|
75 | (9) |
|
3.2.1 Origin of Semiconducting Behavior |
|
|
75 | (5) |
|
3.2.2 Electrical and Optical Properties of Organic Semiconductors |
|
|
80 | (4) |
|
3.3 Architecture of Organic Solar Cells (OSCs) |
|
|
84 | (10) |
|
3.3.1 Normal Geometry of OSCs |
|
|
85 | (1) |
|
3.3.2 Inverted Geometry of OSCs |
|
|
85 | (2) |
|
3.3.3 Bilayer/Planar Heterojunction Structure |
|
|
87 | (2) |
|
3.3.4 Bulk-Heterojunction (BHJ) Structure |
|
|
89 | (1) |
|
3.3.5 Hybrid Planar-Mixed Heterojunction Structure |
|
|
90 | (1) |
|
|
91 | (1) |
|
|
91 | (3) |
|
3.4 Materials and Processing |
|
|
94 | (7) |
|
3.4.1 Thermal Evaporation Technique |
|
|
95 | (4) |
|
3.4.2 Solution Processing |
|
|
99 | (2) |
|
|
99 | (2) |
|
3.4.2.2 Printing and Other Coating Processes |
|
|
101 | (1) |
|
3.5 Parameters That Control the Performance of OSCs |
|
|
101 | (11) |
|
|
101 | (6) |
|
3.5.1.1 Reflection Losses |
|
|
101 | (1) |
|
3.5.1.2 Inefficient Light Absorption |
|
|
102 | (1) |
|
3.5.1.3 Thermalization Losses |
|
|
103 | (1) |
|
3.5.1.4 Losses due to Nonuniform Optical Density Distribution |
|
|
104 | (3) |
|
|
107 | (3) |
|
3.5.2.1 Exciton Recombination Losses |
|
|
107 | (1) |
|
3.5.2.2 Losses at the Donor-Acceptor Interface |
|
|
108 | (1) |
|
3.5.2.3 Recombination Losses in Bulk |
|
|
109 | (1) |
|
3.5.2.4 Collection Losses at Metal Electrodes |
|
|
109 | (1) |
|
3.5.3 Donor-Acceptor Ratio |
|
|
110 | (1) |
|
3.5.4 Active Layer Nanoscale Morphology |
|
|
111 | (1) |
|
3.6 Prediction of Possibly Achievable Efficiencies |
|
|
112 | (5) |
|
3.7 A Review on Recent Developments in BHJ OSCs |
|
|
117 | (12) |
|
3.7.1 Developments in Single BHJ OSCs |
|
|
117 | (6) |
|
3.7.2 Developments in Tandem BHJ OSCs |
|
|
123 | (6) |
|
|
129 | (8) |
4 Device Physics and Modeling |
|
137 | (68) |
|
|
137 | (1) |
|
4.2 Exciton Generation, Diffusion, and Dissociation |
|
|
137 | (4) |
|
4.3 Device Operation Mechanism |
|
|
141 | (2) |
|
4.4 Charge Carrier Transport in Organic Semiconductors |
|
|
143 | (20) |
|
4.4.1 Injection-Limited Charge Transport |
|
|
144 | (1) |
|
4.4.2 Bulk-Limited Charge Transport |
|
|
145 | (23) |
|
|
146 | (3) |
|
4.4.2.2 Effects of Nonzero Schottky Barrier |
|
|
149 | (2) |
|
4.4.2.3 Trap-Filled Limit |
|
|
151 | (9) |
|
4.4.2.4 Hopping Transport |
|
|
160 | (3) |
|
4.5 Determination of Charge Carrier Mobility in Organic Semiconductors |
|
|
163 | (3) |
|
4.6 Factors That Affect Charge Carrier Mobility in Organic Semiconductors |
|
|
166 | (2) |
|
4.7 Modeling of JV Characteristics of Organic Solar Cells (OSCs) |
|
|
168 | (22) |
|
4.7.1 Equivalent Circuit Model |
|
|
171 | (2) |
|
4.7.2 Conventional One-Diode Circuit Model |
|
|
173 | (2) |
|
4.7.3 Improved Circuit Model for OSCs |
|
|
175 | (15) |
|
4.8 Effect of Temperature and Illumination Intensity on Cell Performance |
|
|
190 | (3) |
|
4.9 Origin of Voc in OSCs |
|
|
193 | (4) |
|
|
197 | (8) |
5 Degradation and Its Characterization in Organic Solar Cells |
|
205 | (38) |
|
|
205 | (1) |
|
|
206 | (6) |
|
5.2.1 Degradation in Active Organic Materials |
|
|
206 | (2) |
|
5.2.2 Degradation in Electrode Materials |
|
|
208 | (4) |
|
|
212 | (4) |
|
5.4 Effect of Degradation on Electronic Properties |
|
|
216 | (6) |
|
5.5 Tools for Testing Degradation Mechanisms in OSCs |
|
|
222 | (11) |
|
5.5.1 Atomic Force Microscopy (AFM) |
|
|
223 | (1) |
|
5.5.2 Scanning Electron Microscopy (SEM) |
|
|
223 | (1) |
|
5.5.3 Transmission Electron Microscopy (TEM) |
|
|
224 | (1) |
|
|
224 | (1) |
|
5.5.5 Impedance Spectroscopy |
|
|
225 | (1) |
|
5.5.6 X-Ray Photoelectron Spectroscopy (XPS) |
|
|
225 | (1) |
|
5.5.7 Time-of-Flight Secondary Ion Mass Spectroscopy (TOF-SIMS) |
|
|
226 | (4) |
|
5.5.8 UltravioletVisible (UVVis) Absorption Spectroscopy |
|
|
230 | (1) |
|
5.5.9 Infrared (IR) Spectroscopy |
|
|
230 | (1) |
|
5.5.10 X-Ray Reflectrometry |
|
|
230 | (1) |
|
5.5.11 Photocurrent Mapping |
|
|
231 | (1) |
|
5.5.12 Fluorescence Microscopy |
|
|
232 | (1) |
|
5.6 International Standards for Lifetime Testing of OSCs |
|
|
233 | (2) |
|
|
235 | (4) |
|
|
239 | (4) |
6 How to Prevent Degradation in Organic Solar Cells |
|
243 | (26) |
|
|
243 | (1) |
|
6.2 Prevention of Degradation in Dye-Sensitized Solar Cells (DSSCs) |
|
|
243 | (1) |
|
6.3 Prevention of Degradation in Organic Solar Cells (OSCs) |
|
|
244 | (13) |
|
6.3.1 Molecular Engineering |
|
|
244 | (6) |
|
|
250 | (3) |
|
|
253 | (17) |
|
|
254 | (2) |
|
6.3.3.2 Adhesive Material |
|
|
256 | (1) |
|
6.4 Regeneration of Solar Cells |
|
|
257 | (5) |
|
|
262 | (7) |
7 Roll-to-Roll Organic Solar Cells |
|
269 | (18) |
|
|
269 | (1) |
|
|
270 | (3) |
|
|
270 | (1) |
|
|
270 | (1) |
|
|
271 | (1) |
|
7.2.4 Knife-Over-Edge Coating |
|
|
272 | (1) |
|
|
272 | (1) |
|
7.2.6 Gravure and Meniscus Coatings |
|
|
273 | (1) |
|
7.3 Fabrication of Roll-to-Roll (R2R) Solar Modules |
|
|
273 | (11) |
|
7.4 Characterization of R2R Solar Modules |
|
|
284 | (1) |
|
|
284 | (3) |
8 Cost Analysis, Technological Impact, Challenges, and Outlook |
|
287 | (14) |
|
|
287 | (2) |
|
8.2 Estimation of Manufacturing Costs of Organic Solar Cells (OSCs) |
|
|
289 | (6) |
|
8.3 Technological Impact and Outlook |
|
|
295 | (1) |
|
8.4 State of the Art, Challenges, and Opportunities |
|
|
296 | (2) |
|
|
298 | (3) |
Index |
|
301 | |