Atjaunināt sīkdatņu piekrišanu

Organic Solar Cells: Device Physics, Processing, Degradation, and Prevention [Hardback]

(CSIR - National Physical Laboratory, New Delhi, India)
  • Formāts: Hardback, 325 pages, height x width: 254x178 mm, weight: 793 g, 9 Tables, black and white; 163 Illustrations, black and white
  • Izdošanas datums: 23-Aug-2016
  • Izdevniecība: CRC Press Inc
  • ISBN-10: 1498723276
  • ISBN-13: 9781498723275
  • Hardback
  • Cena: 204,27 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 325 pages, height x width: 254x178 mm, weight: 793 g, 9 Tables, black and white; 163 Illustrations, black and white
  • Izdošanas datums: 23-Aug-2016
  • Izdevniecība: CRC Press Inc
  • ISBN-10: 1498723276
  • ISBN-13: 9781498723275

This book contains detailed information on the types, structure, fabrication, and characterization of organic solar cells (OSCs). It discusses processes to improve efficiencies and the prevention of degradation in OSCs. It compares the cost-effectiveness of OSCs to those based on crystalline silicon and discusses ways to make OSCs more economical. This book provides a practical guide for the fabrication, processing, and characterization of OSCs and paves the way for further development in OSC technology.

Preface ix
Author xi
1 Solar Cells and Their Generations 1(54)
1.1 Introduction
1(2)
1.2 Photovoltaic Effect
3(1)
1.3 Solar Cells and Their Generations
3(26)
1.3.1 First Generation of Solar Cells
3(5)
1.3.1.1 Crystalline Silicon (c-Si) Solar Cells
4(2)
1.3.1.2 Polycrystalline (Poly-c) Si Solar Cells
6(2)
1.3.2 Second Generation of Solar Cells
8(7)
1.3.2.1 Amorphous Si (a-Si) Solar Cells
8(3)
1.3.2.2 Copper Indium Gallium Diselenide (CIGS) Solar Cells
11(2)
1.3.2.3 Cadmium Telluride (CdTe) Solar Cells
13(2)
1.3.3 Third Generation of Solar Cells
15(8)
1.3.3.1 Multijunction Solar Cells Based on III—V Compound Semiconductors
15(2)
1.3.3.2 Quantum Dot Solar Cells (QDSCs)
17(2)
1.3.3.3 Dye-Sensitized Solar Cells (DSSCs)
19(2)
1.3.3.4 Organic Solar Cells (OSCs)
21(2)
1.3.4 Fourth Generation of Solar Cells
23(6)
1.3.4.1 Organic—Inorganic Hybrid Solar Cells
23(2)
1.3.4.2 Perovskite Solar Cells
25(4)
1.4 Performance Analysis of a Solar Cell
29(10)
1.4.1 Solar Spectrum and Irradiance
29(3)
1.4.2 Power Conversion Efficiency (PCE)
32(5)
1.4.3 Incident Photon to Converted Electron (IPCE) Efficiency
37(2)
1.5 Photovoltaic Modules
39(3)
1.6 Utilization of Solar Modules for Different Applications
42(1)
1.7 Energy Payback Time (EPBT) and Carbon Footprint
43(2)
1.8 Current State of the Art
45(1)
References
46(9)
2 Degradation in Different Solar Cell Technologies 55(18)
2.1 Introduction
55(1)
2.2 How Different Solar Cells Degrade
55(10)
2.2.1 Degradation in Silicon (Si) Wafer Solar Cells
56(1)
2.2.2 Degradation in Hydrogenated Amorphous Silicon (a-Si:H) Solar Cells
56(3)
2.2.3 Degradation in Copper Indium Gallium Diselenide (CIGS) Solar Cells
59(1)
2.2.4 Degradation in Cadmium Telluride (CdTe) Solar Cells
60(2)
2.2.5 Degradation in III—V Multijunction Solar Cells
62(1)
2.2.6 Degradation in Dye-Sensitized Solar Cells (DSSCs)
62(2)
2.2.7 Degradation in Organic Solar Cells (OSCs)
64(1)
2.3 Degradation in Solar Modules
65(3)
2.3.1 Short-Circuit and Open-Circuit Failure
65(1)
2.3.2 Hot-Spot Failure
65(2)
2.3.3 Encapsulant Failure
67(1)
2.3.4 Cracking of Solar Cells and Solar Modules
68(1)
References
68(5)
3 Organic Solar Cells 73(64)
3.1 Introduction
73(2)
3.2 Organic Semiconductors
75(9)
3.2.1 Origin of Semiconducting Behavior
75(5)
3.2.2 Electrical and Optical Properties of Organic Semiconductors
80(4)
3.3 Architecture of Organic Solar Cells (OSCs)
84(10)
3.3.1 Normal Geometry of OSCs
85(1)
3.3.2 Inverted Geometry of OSCs
85(2)
3.3.3 Bilayer/Planar Heterojunction Structure
87(2)
3.3.4 Bulk-Heterojunction (BHJ) Structure
89(1)
3.3.5 Hybrid Planar-Mixed Heterojunction Structure
90(1)
3.3.6 p-i-n Structure
91(1)
3.3.7 Tandem Structure
91(3)
3.4 Materials and Processing
94(7)
3.4.1 Thermal Evaporation Technique
95(4)
3.4.2 Solution Processing
99(2)
3.4.2.1 Spin Coating
99(2)
3.4.2.2 Printing and Other Coating Processes
101(1)
3.5 Parameters That Control the Performance of OSCs
101(11)
3.5.1 Optical Losses
101(6)
3.5.1.1 Reflection Losses
101(1)
3.5.1.2 Inefficient Light Absorption
102(1)
3.5.1.3 Thermalization Losses
103(1)
3.5.1.4 Losses due to Nonuniform Optical Density Distribution
104(3)
3.5.2 Electrical Losses
107(3)
3.5.2.1 Exciton Recombination Losses
107(1)
3.5.2.2 Losses at the Donor-Acceptor Interface
108(1)
3.5.2.3 Recombination Losses in Bulk
109(1)
3.5.2.4 Collection Losses at Metal Electrodes
109(1)
3.5.3 Donor-Acceptor Ratio
110(1)
3.5.4 Active Layer Nanoscale Morphology
111(1)
3.6 Prediction of Possibly Achievable Efficiencies
112(5)
3.7 A Review on Recent Developments in BHJ OSCs
117(12)
3.7.1 Developments in Single BHJ OSCs
117(6)
3.7.2 Developments in Tandem BHJ OSCs
123(6)
References
129(8)
4 Device Physics and Modeling 137(68)
4.1 Introduction
137(1)
4.2 Exciton Generation, Diffusion, and Dissociation
137(4)
4.3 Device Operation Mechanism
141(2)
4.4 Charge Carrier Transport in Organic Semiconductors
143(20)
4.4.1 Injection-Limited Charge Transport
144(1)
4.4.2 Bulk-Limited Charge Transport
145(23)
4.4.2.1 Band Transport
146(3)
4.4.2.2 Effects of Nonzero Schottky Barrier
149(2)
4.4.2.3 Trap-Filled Limit
151(9)
4.4.2.4 Hopping Transport
160(3)
4.5 Determination of Charge Carrier Mobility in Organic Semiconductors
163(3)
4.6 Factors That Affect Charge Carrier Mobility in Organic Semiconductors
166(2)
4.7 Modeling of J—V Characteristics of Organic Solar Cells (OSCs)
168(22)
4.7.1 Equivalent Circuit Model
171(2)
4.7.2 Conventional One-Diode Circuit Model
173(2)
4.7.3 Improved Circuit Model for OSCs
175(15)
4.8 Effect of Temperature and Illumination Intensity on Cell Performance
190(3)
4.9 Origin of Voc in OSCs
193(4)
References
197(8)
5 Degradation and Its Characterization in Organic Solar Cells 205(38)
5.1 Introduction
205(1)
5.2 Chemical Degradation
206(6)
5.2.1 Degradation in Active Organic Materials
206(2)
5.2.2 Degradation in Electrode Materials
208(4)
5.3 Physical Degradation
212(4)
5.4 Effect of Degradation on Electronic Properties
216(6)
5.5 Tools for Testing Degradation Mechanisms in OSCs
222(11)
5.5.1 Atomic Force Microscopy (AFM)
223(1)
5.5.2 Scanning Electron Microscopy (SEM)
223(1)
5.5.3 Transmission Electron Microscopy (TEM)
224(1)
5.5.4 J—V Measurements
224(1)
5.5.5 Impedance Spectroscopy
225(1)
5.5.6 X-Ray Photoelectron Spectroscopy (XPS)
225(1)
5.5.7 Time-of-Flight Secondary Ion Mass Spectroscopy (TOF-SIMS)
226(4)
5.5.8 Ultraviolet—Visible (UV—Vis) Absorption Spectroscopy
230(1)
5.5.9 Infrared (IR) Spectroscopy
230(1)
5.5.10 X-Ray Reflectrometry
230(1)
5.5.11 Photocurrent Mapping
231(1)
5.5.12 Fluorescence Microscopy
232(1)
5.6 International Standards for Lifetime Testing of OSCs
233(2)
5.7 Lifetime Calculation
235(4)
References
239(4)
6 How to Prevent Degradation in Organic Solar Cells 243(26)
6.1 Introduction
243(1)
6.2 Prevention of Degradation in Dye-Sensitized Solar Cells (DSSCs)
243(1)
6.3 Prevention of Degradation in Organic Solar Cells (OSCs)
244(13)
6.3.1 Molecular Engineering
244(6)
6.3.2 Device Engineering
250(3)
6.3.3 Encapsulation
253(17)
6.3.3.1 Barrier Material
254(2)
6.3.3.2 Adhesive Material
256(1)
6.4 Regeneration of Solar Cells
257(5)
References
262(7)
7 Roll-to-Roll Organic Solar Cells 269(18)
7.1 Introduction
269(1)
7.2 Printing Techniques
270(3)
7.2.1 Doctor Blading
270(1)
7.2.2 Screen Printing
270(1)
7.2.3 Inkjet Printing
271(1)
7.2.4 Knife-Over-Edge Coating
272(1)
7.2.5 Slot-Die Coating
272(1)
7.2.6 Gravure and Meniscus Coatings
273(1)
7.3 Fabrication of Roll-to-Roll (R2R) Solar Modules
273(11)
7.4 Characterization of R2R Solar Modules
284(1)
References
284(3)
8 Cost Analysis, Technological Impact, Challenges, and Outlook 287(14)
8.1 Introduction
287(2)
8.2 Estimation of Manufacturing Costs of Organic Solar Cells (OSCs)
289(6)
8.3 Technological Impact and Outlook
295(1)
8.4 State of the Art, Challenges, and Opportunities
296(2)
References
298(3)
Index 301
Pankaj Kumar