Preface |
|
xiii | |
Authors |
|
xvii | |
Section I Organic Device Physics and Modeling |
|
|
|
3 | (10) |
|
|
3 | (1) |
|
1.2 Organic Semiconductor Materials for Organic Devices |
|
|
4 | (2) |
|
|
5 | (1) |
|
|
5 | (1) |
|
1.2.3 Semiconductor Blends |
|
|
6 | (1) |
|
1.3 Organic Thin-Film Transistors (OTFTs) |
|
|
6 | (2) |
|
1.3.1 Operating Principle |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
10 | (1) |
|
|
10 | (1) |
|
|
10 | (1) |
|
|
11 | (2) |
|
Chapter 2 OTFT Parameters, Structures, Models, Materials, Fabrication, and Applications: A Review |
|
|
13 | (54) |
|
|
13 | (1) |
|
2.2 Parameters of Organic Thin-Film Transistors (OTFTs) |
|
|
14 | (3) |
|
|
14 | (1) |
|
|
15 | (1) |
|
2.2.3 On/Off Current Ratio |
|
|
16 | (1) |
|
|
16 | (1) |
|
|
17 | (7) |
|
2.3.1 Single Gate Structure |
|
|
17 | (2) |
|
2.3.2 Dual Gate Structure |
|
|
19 | (1) |
|
2.3.3 Vertical Channel Structure |
|
|
20 | (3) |
|
2.3.4 Cylindrical Gate Structure |
|
|
23 | (1) |
|
|
24 | (4) |
|
2.4.1 Compact Direct Current (DC) Model |
|
|
24 | (1) |
|
|
25 | (1) |
|
2.4.3 Charge Drift Model for Subthreshold Region |
|
|
26 | (2) |
|
2.5 Charge Transport in Organic Semiconductors |
|
|
28 | (3) |
|
2.5.1 Variable Range Hopping (VRH) Model |
|
|
29 | (1) |
|
2.5.2 Multiple Trapping and Release (MTR) Model |
|
|
30 | (1) |
|
|
31 | (1) |
|
|
31 | (13) |
|
2.6.1 Organic Semiconductors |
|
|
32 | (7) |
|
|
32 | (3) |
|
|
35 | (4) |
|
2.6.2 Electrode Materials |
|
|
39 | (2) |
|
2.6.3 Gate Dielectric Materials |
|
|
41 | (2) |
|
2.6.4 Substrate Materials |
|
|
43 | (1) |
|
|
44 | (8) |
|
2.7.1 Physical Vapor Deposition (PVD) Techniques |
|
|
45 | (3) |
|
2.7.1.1 Thermal Vacuum Evaporation Techniques |
|
|
45 | (2) |
|
2.7.1.2 Sputtering Techniques |
|
|
47 | (1) |
|
2.7.2 Solution Processing Techniques |
|
|
48 | (2) |
|
|
48 | (1) |
|
|
49 | (1) |
|
2.7.2.3 Inkjet Printing/Screen Printing |
|
|
49 | (1) |
|
2.7.3 Chemical Vapor Deposition Technique |
|
|
50 | (2) |
|
2.8 Performance-Influencing Factors of OTFTs |
|
|
52 | (2) |
|
2.8.1 Dimensional Parameters |
|
|
52 | (1) |
|
2.8.2 ContactSemiconductor Interface |
|
|
53 | (1) |
|
2.8.3 SemiconductorDielectric Interface |
|
|
53 | (1) |
|
|
54 | (2) |
|
|
56 | (1) |
|
|
56 | (2) |
|
|
58 | (1) |
|
|
58 | (1) |
|
|
59 | (1) |
|
|
60 | (7) |
|
Chapter 3 Analytical Modeling and Parameter Extraction of Top and Bottom Contact Structures of Organic Thin-Film Transistors |
|
|
67 | (20) |
|
|
67 | (1) |
|
3.2 Device Structure and Contact Effects |
|
|
68 | (3) |
|
3.3 Analytical Models of Organic Thin-Film Transistors (OTFTs) |
|
|
71 | (5) |
|
3.3.1 Model for GateContact Overlap Region |
|
|
71 | (3) |
|
3.3.2 Model for Current in Linear and Saturation Region |
|
|
74 | (2) |
|
3.4 Differential Method for Parameter Extraction |
|
|
76 | (3) |
|
3.5 Results and Discussion |
|
|
79 | (2) |
|
|
81 | (1) |
|
|
82 | (1) |
|
|
82 | (1) |
|
|
83 | (1) |
|
|
84 | (1) |
|
|
85 | (2) |
|
Chapter 4 Impact of Semiconductor and Dielectric Thicknesses on the Performance of Top and Bottom Contact Organic Thin-Film Transistors |
|
|
87 | (32) |
|
|
87 | (2) |
|
4.2 Process/Device Simulation Tool and Simulation Conditions |
|
|
89 | (11) |
|
|
89 | (2) |
|
4.2.2 Device Simulation Steps |
|
|
91 | (4) |
|
4.2.2.1 Defining Structural Dimensions and Mesh Specifications |
|
|
91 | (1) |
|
4.2.2.2 Defining Material Parameters and Application of the Appropriate Physical Models |
|
|
92 | (2) |
|
4.2.2.3 Operational Bias Conditions and Run the Simulation |
|
|
94 | (1) |
|
4.2.3 Performance Parameter Extraction |
|
|
95 | (5) |
|
4.3 Electrical Characteristics and Parameters of Top Contact and Bottom Contact Organic Thin-Film Transistors |
|
|
100 | (2) |
|
4.4 Impact of tosc and tox on Performance Parameters of Top Contact and Bottom Contact Organic Thin-Film Transistors |
|
|
102 | (6) |
|
4.5 Contact Resistance Extraction |
|
|
108 | (4) |
|
4.5.1 Contact Resistance Analysis in Top Contact Structure |
|
|
108 | (2) |
|
4.5.2 Contact Resistance Analysis in Bottom Contact Structure |
|
|
110 | (2) |
|
|
112 | (1) |
|
|
113 | (1) |
|
|
113 | (1) |
|
|
114 | (1) |
|
|
115 | (1) |
|
|
116 | (3) |
|
Chapter 5 Organic Light-Emitting Transistors |
|
|
119 | (36) |
|
|
119 | (1) |
|
|
120 | (1) |
|
5.3 Materials for Organic Light-Emitting Transistor (OLET) Layers |
|
|
121 | (8) |
|
5.3.1 Organic Active Materials |
|
|
121 | (3) |
|
5.3.1.1 Small Molecules and Oligomers |
|
|
122 | (1) |
|
|
122 | (2) |
|
|
124 | (2) |
|
|
126 | (3) |
|
5.4 Classification of OLETs |
|
|
129 | (12) |
|
5.4.1 Classification Based on Charge Carriers |
|
|
129 | (5) |
|
|
129 | (2) |
|
|
131 | (3) |
|
5.4.2 Classification Based on Biasing Conditions |
|
|
134 | (6) |
|
5.4.2.1 Direct Current (DC) Gated OLETs |
|
|
134 | (2) |
|
5.4.2.2 Alternating Current (AC) Gated Ambipolar OLETs |
|
|
136 | (4) |
|
5.4.3 Classification Based on Architecture |
|
|
140 | (16) |
|
|
140 | (1) |
|
|
140 | (1) |
|
5.5 Standard Terms and Properties of Light Emission in Organic Semiconductors |
|
|
141 | (4) |
|
5.6 Comparison of Organic Light-Emitting Transistors with Conventional Organic Light-Emitting Diodes |
|
|
145 | (1) |
|
|
146 | (1) |
|
|
146 | (1) |
|
|
147 | (1) |
|
|
148 | (7) |
Section II Organic Device Applications |
|
|
Chapter 6 Static and Dynamic Analysis of Organic All-p, Organic Complementary, and Hybrid Complementary Inverter Circuits |
|
|
155 | (28) |
|
|
155 | (1) |
|
6.2 Analysis of Different p- and n-Type Devices |
|
|
156 | (9) |
|
6.2.1 p-Type Organic Thin-Film Transistors (OTFTs) |
|
|
157 | (3) |
|
6.2.1.1 Pentacene-Based p-Type OTFT |
|
|
157 | (1) |
|
6.2.1.2 CuPc-Based p-Type OTFT |
|
|
158 | (2) |
|
|
160 | (2) |
|
6.2.2.1 F16CuPc-Based n-Type OTFT |
|
|
160 | (1) |
|
6.2.2.2 C60-Based n-Type OTFT |
|
|
161 | (1) |
|
6.2.3 n-Type Inorganic TFTs |
|
|
162 | (3) |
|
6.2.3.1 a-Si:HBased n-Type Inorganic TFT |
|
|
163 | (1) |
|
6.2.3.2 ZnO-Based n-Type Inorganic TFT |
|
|
164 | (1) |
|
6.3 Analysis of Inverter Circuits with Different TFT Combinations |
|
|
165 | (9) |
|
6.3.1 Fully Organic Complementary Inverter Circuits |
|
|
169 | (2) |
|
6.3.2 Hybrid Complementary Inverter Circuits |
|
|
171 | (1) |
|
6.3.3 All p-Type Organic Inverter Circuit |
|
|
172 | (2) |
|
6.4 Results and Discussion |
|
|
174 | (2) |
|
|
176 | (1) |
|
|
177 | (1) |
|
|
177 | (1) |
|
|
178 | (1) |
|
|
179 | (1) |
|
|
180 | (3) |
|
Chapter 7 Robust Organic Inverters and NAND/NOR Logic Circuits Based on Single and Dual Gate OTFTs |
|
|
183 | (34) |
|
|
183 | (1) |
|
7.2 Single and Dual Gate Device Analysis |
|
|
184 | (6) |
|
7.3 Diode Load Logic (DLL) and Zero-Vgs Load Logic (ZVLL) Configurations |
|
|
190 | (1) |
|
7.4 Organic Inverter Circuits |
|
|
190 | (4) |
|
7.5 Improvement in Performance of Organic Dual Gate Inverters |
|
|
194 | (7) |
|
7.5.1 Organic Inverter Circuits with Back-Gate Biasing |
|
|
195 | (4) |
|
7.5.2 Organic Bootstrap Inverter Circuits |
|
|
199 | (2) |
|
7.6 Organic NAND Logic Gate |
|
|
201 | (4) |
|
7.7 Organic NOR Logic Gate |
|
|
205 | (3) |
|
|
208 | (2) |
|
|
210 | (1) |
|
|
210 | (1) |
|
|
211 | (1) |
|
|
211 | (2) |
|
|
213 | (4) |
|
Chapter 8 Digital Circuit Designs Based on Single and Dual Gate Organic Thin-Film Transistors Using Diode Load Logic and Zero-Vgs Load Logic Configurations |
|
|
217 | (24) |
|
|
217 | (2) |
|
8.2 Combinational Circuit Designs |
|
|
219 | (1) |
|
8.2.1 SG-Based 2-to-1 Multiplexer Design in DLL and ZVLL Configurations |
|
|
219 | (1) |
|
8.3 Clocked Sequential Circuit Designs Based on SG and DG OTFTs |
|
|
220 | (16) |
|
8.3.1 SR Latch Implementations |
|
|
221 | (5) |
|
8.3.1.1 SG-Based SR Latch Designs in DLL and ZVLL Configurations |
|
|
222 | (2) |
|
8.3.1.2 DG-Based SR Latch Designs in DLL and ZVLL Configurations |
|
|
224 | (2) |
|
8.3.2 D-Latch Implementations |
|
|
226 | (3) |
|
8.3.2.1 SG-Based D-Latch Designs in DLL and ZVLL Configurations |
|
|
226 | (2) |
|
8.3.2.2 DG-Based D-Latch Designs in DLL and ZVLL Configurations |
|
|
228 | (1) |
|
8.3.3 JK Latch Implementations |
|
|
229 | (4) |
|
8.3.3.1 SG-Based JK Latch Designs in DLL and ZVLL Configurations |
|
|
230 | (2) |
|
8.3.3.2 DG-Based JK Latch Designs in DLL and ZVLL Configurations |
|
|
232 | (1) |
|
8.3.4 T-Latch Implementations |
|
|
233 | (12) |
|
8.3.4.1 SG-Based T-Latch Designs in DLL and ZVLL Configurations |
|
|
234 | (1) |
|
8.3.4.2 DG-Based T-Latch Designs in DLL and ZVLL Configurations |
|
|
235 | (1) |
|
|
236 | (1) |
|
|
237 | (1) |
|
|
237 | (2) |
|
|
239 | (1) |
|
|
239 | (2) |
|
Chapter 9 Static Random Access Memory Cell Design Based on All-p Organic, Hybrid, and Complementary Organic Thin-Film Transistors |
|
|
241 | (26) |
|
|
241 | (2) |
|
9.2 Static Random Access Memory (SRAM) Cell Configuration |
|
|
243 | (2) |
|
9.3 Performance of SRAM Cell with Different Thin-Film Transistor Combinations |
|
|
245 | (13) |
|
9.3.1 Static Noise Margin |
|
|
245 | (4) |
|
|
249 | (5) |
|
|
254 | (4) |
|
9.4 Complementary SRAM Cell with p-Type Access Transistors |
|
|
258 | (3) |
|
|
261 | (1) |
|
|
262 | (1) |
|
|
262 | (2) |
|
|
264 | (1) |
|
|
264 | (1) |
|
|
265 | (2) |
|
Chapter 10 Applications and Future Perspectives |
|
|
267 | (28) |
|
10.1 Organic Device Applications |
|
|
267 | (18) |
|
10.1.1 Digital Logic Circuits |
|
|
267 | (2) |
|
10.1.2 Analog and Mixed Signal Circuits |
|
|
269 | (2) |
|
|
271 | (1) |
|
10.1.4 Light-Emitting Diodes and Transistors |
|
|
272 | (2) |
|
10.1.5 Radio Frequency Identification (RFID) Tags |
|
|
274 | (2) |
|
|
276 | (3) |
|
|
279 | (3) |
|
10.1.8 Organic Solar Cells |
|
|
282 | (3) |
|
10.1.8.1 Historical Background of Organic Solar Cells |
|
|
282 | (1) |
|
10.1.8.2 Operating Principle of Organic Solar Cells |
|
|
283 | (1) |
|
10.1.8.3 Bulk Heterojunction Solar Cell |
|
|
284 | (1) |
|
|
285 | (4) |
|
10.2.1 Novel Materials and Structures |
|
|
286 | (1) |
|
10.2.2 Optimization of Device Performance |
|
|
287 | (1) |
|
|
287 | (1) |
|
10.2.4 Environmental Device Stability |
|
|
288 | (1) |
|
|
289 | (6) |
Appendix A: Simulation Examples |
|
295 | (50) |
Index |
|
345 | |