Atjaunināt sīkdatņu piekrišanu

Orlicz Spaces and Generalized Orlicz Spaces 2019 ed. [Mīkstie vāki]

  • Formāts: Paperback / softback, 169 pages, height x width: 235x155 mm, weight: 454 g, 9 Illustrations, black and white; X, 169 p. 9 illus., 1 Paperback / softback
  • Sērija : Lecture Notes in Mathematics 2236
  • Izdošanas datums: 08-May-2019
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030150992
  • ISBN-13: 9783030150990
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 42,44 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 49,94 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 169 pages, height x width: 235x155 mm, weight: 454 g, 9 Illustrations, black and white; X, 169 p. 9 illus., 1 Paperback / softback
  • Sērija : Lecture Notes in Mathematics 2236
  • Izdošanas datums: 08-May-2019
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030150992
  • ISBN-13: 9783030150990
Citas grāmatas par šo tēmu:

This book presents a systematic treatment of generalized Orlicz spaces (also known as Musielak–Orlicz spaces) with minimal assumptions on the generating F-function. It introduces and develops a technique centered on the use of equivalent F-functions. Results from classical functional analysis are presented in detail and new material is included on harmonic analysis. Extrapolation is used to prove, for example, the boundedness of Calderón–Zygmund operators. Finally, central results are provided for Sobolev spaces, including Poincaré and Sobolev–Poincaré inequalities in norm and modular forms.

Primarily aimed at researchers and PhD students interested in Orlicz spaces or generalized Orlicz spaces, this book can be used as a basis for advanced graduate courses in analysis.


1 Introduction
1(12)
1.1 Rationale and Philosophy of This Book
1(2)
1.2 History of Non-standard Growth Phenomena
3(2)
1.3 Notation and Background
5(5)
1.4 Tools Missing in Generalized Orlicz Spaces
10(3)
2 Φ-Functions
13(34)
2.1 Equivalent Φ-Functions
13(6)
2.2 Upgrading Φ-Functions
19(4)
2.3 Inverse Φ-Functions
23(7)
2.4 Conjugate Φ-Functions
30(6)
2.5 Generalized Φ-Functions
36(11)
3 Generalized Orlicz Spaces
47(32)
3.1 Modulars
47(4)
3.2 Quasinorm and the Unit Ball Property
51(8)
3.3 Convergence and Completeness
59(3)
3.4 Associate Spaces
62(4)
3.5 Separability
66(2)
3.6 Uniform Convexity and Reflexivity
68(4)
3.7 The Weight Condition (A0) and Density of Smooth Functions
72(7)
4 Maximal and Averaging Operators
79(26)
4.1 The Local Continuity Condition (A1)
79(4)
4.2 The Decay Condition (A2)
83(6)
4.3 Maximal Operators
89(7)
4.4 Averaging Operators and Applications
96(9)
5 Extrapolation and Interpolation
105(18)
5.1 Weights and Classical Extrapolation
106(2)
5.2 Rescaling and Conditions (A0), (A1) and (A2)
108(2)
5.3 Diagonal and Off-Diagonal Extrapolation
110(4)
5.4 Applications of Extrapolation
114(3)
5.5 Complex Interpolation
117(6)
6 Sobolev Spaces
123(22)
6.1 Basic Properties
123(5)
6.2 Poincare Inequalities
128(6)
6.3 Sobolev Embeddings
134(7)
6.4 Density of Regular Functions
141(4)
7 Special Cases
145(14)
7.1 Variable Exponent Growth
145(4)
7.2 Double Phase Growth
149(4)
7.3 Other Conditions
153(3)
7.4 Orlicz Spaces
156(3)
References 159(6)
Index 165