Atjaunināt sīkdatņu piekrišanu

Orthogonal Rational Functions [Mīkstie vāki]

(Universidad de la Laguna, Tenerife), (Universiteit van Amsterdam), (Norges Teknisk-Naturvitenskapelige Universitet (Ntnu), Norway), (Katholieke Universiteit Leuven, Belgium)
  • Formāts: Paperback / softback, 424 pages, height x width x depth: 229x152x24 mm, weight: 620 g, 18 Line drawings, unspecified
  • Sērija : Cambridge Monographs on Applied and Computational Mathematics
  • Izdošanas datums: 23-Jul-2009
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 0521115914
  • ISBN-13: 9780521115919
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 59,92 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 424 pages, height x width x depth: 229x152x24 mm, weight: 620 g, 18 Line drawings, unspecified
  • Sērija : Cambridge Monographs on Applied and Computational Mathematics
  • Izdošanas datums: 23-Jul-2009
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 0521115914
  • ISBN-13: 9780521115919
Citas grāmatas par šo tēmu:
The book generalises the classical theory of orthogonal polynomials to rational functions.

This volume generalizes the classical theory of orthogonal polynomials on the complex unit circle or on the real line to orthogonal rational functions whose poles are among a prescribed set of complex numbers. The first part treats the case where these poles are all outside the unit disk or in the lower half plane. Classical topics such as recurrence relations, numerical quadrature, interpolation properties, Favard theorems, convergence, asymptotics, and moment problems are generalized and treated in detail. The same topics are discussed for a different situation where the poles are located on the unit circle or on the extended real line. In the last chapter, several applications are mentioned including linear prediction, Pisarenko modeling, lossless inverse scattering, and network synthesis. This theory has many applications both in theoretical real and complex analysis, approximation theory, numerical analysis, system theory, and electrical engineering.

Recenzijas

'The text is written with great clarity A book with four authors is not common, but these four are to be applauded for their achievement.' J. H. McCabe

Papildus informācija

The book generalises the classical theory of orthogonal polynomials to rational functions.
List of symbols
xi
Introduction 1(14)
1 Preliminaries
15(27)
1.1 Hardy classes
15(8)
1.2 The classes C and B
23(8)
1.3 Factorizations
31(3)
1.4 Reproducing kernel spaces
34(2)
1.5 J-unitary and J-contractive matrices
36(6)
2 The fundamental spaces
42(22)
2.1 The spaces Ln
42(11)
2.2 Calculus in Ln
53(5)
2.3 Extremal problems in Ln
58(6)
3 The kernel functions
64(10)
3.1 Christoffel-Darboux relations
64(3)
3.2 Recurrence relations for the kernels
67(3)
3.3 Normalized recursions for the kernels
70(4)
4 Recurrence and second kind functions
74(32)
4.1 Recurrence for the orthogonal functions
74(8)
4.2 Functions of the second kind
82(8)
4.3 General solutions
90(5)
4.4 Continued fractions and three-term recurrence
95(6)
4.5 Points not on the boundary
101(5)
5 Para-orthogonality and quadrature
106(15)
5.1 Interpolatory quadrature
106(2)
5.2 Para-orthogonal functions
108(4)
5.3 Quadrature
112(5)
5.4 The weights
117(2)
5.5 An alternative approach
119(2)
6 Interpolation
121(28)
6.1 Interpolation properties for orthogonal functions
121(8)
6.2 Measures and interpolation
129(6)
6.3 Interpolation properties for the kernels
135(5)
6.4 The interpolation algorithm of Nevanlinna-Pick
140(5)
6.5 Interpolation algorithm for the orthonormal functions
145(4)
7 Density of the rational functions
149(12)
7.1 Density in Lp and Hp
149(6)
7.2 Density in L2(μ) and H2(μ)
155(6)
8 Favard theorems
161(12)
8.1 Orthogonal functions
161(4)
8.2 Kernels
165(8)
9 Convergence
173(66)
9.1 Generalization of the Szego problem
174(7)
9.2 Further convergence results and asymptotic behavior
181(2)
9.3 Convergence of φn
183(8)
9.4 Equivalence of conditions
191(1)
9.5 Varying measures
192(4)
9.6 Stronger results
196(10)
9.7 Weak convergence
206(2)
9.8 Erdos-Turan class and ratio asymptotics
208(18)
9.9 Root asymptotics
226(7)
9.10 Rates of convergence
233(6)
10 Moment problems
239(18)
10.1 Motivation and formulation of the problem
239(2)
10.2 Nested disks
241(10)
10.3 The moment problem
251(6)
11 The boundary case
257(85)
11.1 Recurrence for points on the boundary
257(10)
11.2 Functions of the second kind
267(5)
11.3 Christoffel-Darboux relation
272(5)
11.4 Green's formula
277(3)
11.5 Quasi-orthogonal functions
280(6)
11.6 Quadrature formulas
286(4)
11.7 Nested disks
290(10)
11.8 Moment problem
300(7)
11.9 Favard type theorem
307(12)
11.10 Interpolation
319(19)
11.11 Convergence
338(4)
12 Some applications
342(47)
12.1 Linear prediction
343(13)
12.2 Pisarenko modeling problem
356(3)
12.3 Lossless inverse scattering
359(10)
12.4 Network synthesis
369(4)
12.5 H∞ problem
373(16)
12.5.1 The standard H∞ control problem
373(6)
12.5.2 Hankel operators
379(6)
12.5.3 Hankel norm approximation
385(4)
Conclusion 389(4)
Bibliography 393(12)
Index 405