Atjaunināt sīkdatņu piekrišanu

E-grāmata: Partial Least Squares Regression: and Related Dimension Reduction Methods

(Universidad Nacional del Litoral, Argentina), (University of Minnesota, U.S.A)
  • Formāts: 448 pages
  • Izdošanas datums: 17-Jul-2024
  • Izdevniecība: Chapman & Hall/CRC
  • Valoda: eng
  • ISBN-13: 9781040051320
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 62,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 448 pages
  • Izdošanas datums: 17-Jul-2024
  • Izdevniecība: Chapman & Hall/CRC
  • Valoda: eng
  • ISBN-13: 9781040051320
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"Partial least squares (PLS) regression is, at its historical core, a black-box algorithmic method for dimension reduction and prediction based on an underlying linear relationship between a possibly vector-valued response and a number of predictors. Through envelopes, much more has been learned about PLS regression, resulting in a mass of information that allows an envelope bridge that takes PLS regression from a black-box algorithm to a core statistical paradigm based on objective function optimizationand, more generally, connects the applied sciences and statistics in the context of PLS. This book focuses on developing this bridge. It also covers uses of PLS outside of linear regression, including discriminant analysis, non-linear regression, generalized linear models and dimension reduction generally"--

Through envelopes, more has been learned about PLS regression, resulting in a mass of information that allows an envelope bridge that takes PLS regression from a black-box algorithm to a core statistical paradigm based on objective function optimization. This book develops this bridge.



Partial least squares (PLS) regression is, at its historical core, a black-box algorithmic method for dimension reduction and prediction based on an underlying linear relationship between a possibly vector-valued response and a number of predictors. Through envelopes, much more has been learned about PLS regression, resulting in a mass of information that allows an envelope bridge that takes PLS regression from a black-box algorithm to a core statistical paradigm based on objective function optimization and, more generally, connects the applied sciences and statistics in the context of PLS. This book focuses on developing this bridge. It also covers uses of PLS outside of linear regression, including discriminant analysis, non-linear regression, generalized linear models and dimension reduction generally.

Key Features:

  • Showcases the first serviceable method for studying high-dimensional regressions.
  • Provides necessary background on PLS and its origin.
  • R and Python programs are available for nearly all methods discussed in the book.

Preface

1. Introduction

2. Envelopes for Regression

3. PLS Algorithms for Predictor Reduction

4. Asymptotic Properties of PLS

5. Simultaneous Reduction

6. Partial PLS and Partial Envelopes

7. Linear Discriminant Analysis

8. Quadratic Discriminant Analysis

9. Nonlinear PLS

10. The Role of PLS in Social Science Path Analyses

11. Ancillary Topics

A. Proofs of Selected Results

Bibliography

R. Dennis Cook is Professor Emeritus, School of Statistics, University of Minnesota. His research areas include dimension reduction, linear and nonlinear regression, experimental design, statistical diagnostics, statistical graphics, and population genetics. Perhaps best known for Cooks Distance, a now ubiquitous statistical method, he has authored over 250 research articles, two textbooks and three research monographs. He is a five-time recipient of the Jack Youden Prize for Best Expository Paper in Technometrics as well as the Frank Wilcoxon Award for Best Technical Paper. He received the 2005 COPSS Fisher Lecture and Award, and is a Fellow of ASA and IMS.

Liliana Forzani is Full Professor, School of Chemical Engineering, National University of Litoral and principal researcher of CONICET (National Scientific and Technical Research Council), Argentina. Her contributions are in mathematical statistics, especially sufficient dimension reduction, abundance in regression and statistics for chemometrics. She established the first research group in statistics at her university after receiving her Ph.D in Statistics at the University of Minnesota. She has authored over 75 research articles in mathematics and statistics, and was recipient of the LOreal-Unesco-Conicet prize for Women in science.