Atjaunināt sīkdatņu piekrišanu

E-grāmata: Particle Accelerator Physics II: Nonlinear and Higher-Order Beam Dynamics

  • Formāts: PDF+DRM
  • Izdošanas datums: 06-Dec-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642975509
  • Formāts - PDF+DRM
  • Cena: 85,66 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 06-Dec-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642975509

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This volume continues the discussion of particle accelerator physics beyond the introduction in Vol. I. It is specially aimed at the graduate student and scientist planning to work or working in the field of accelerator physics. Basic principles of beam dynamics already discussed in Vol. 1, are expanded into the nonlinear regime in order to tackle fundamental problems encountered in present day accelerator design and development. Nonlinear dynamics is discussed both for the transverse phase space to determine chromatic and geometric aberrations which limit the dynamic aperture as well as for the longitude phase space in connection with phase focusing at very small values of the momentum compaction. whenever possible, effects derived theoretically are compared with observations made at existing accelerators.
Hamiltonian Formulation of Beam Dynamics
1(42)
Hamiltonian Formalism
1(11)
Lagrange Equations
1(3)
Hamiltonian Equations
4(2)
Canonical Transformations
6(4)
Action-Angle Variables
10(2)
Hamiltonian Resonance Theory
12(17)
Nonlinear Hamiltonian
12(4)
Resonant Terms
16(2)
Resonance Patterns and Stop-Band Width
18(7)
Third-Order Resonance
25(4)
Hamiltonian and Coupling
29(10)
Linearly Coupled Motion
29(9)
Higher-Order Coupling Resonances
38(1)
Multiple Resonances
39(1)
Symplectic Transformation
39(4)
Problems
41(2)
General Electromagnetic Fields
43(30)
General Transverse Magnetic-Field Expansion
43(8)
Third-Order Differential Equation of Motion
51(6)
Periodic Wiggler Magnets
57(9)
Wiggler Field Configuration
57(4)
Focusing in a Wiggler Magnet
61(3)
Hard-Edge Model of Wiggler Magnets
64(2)
Superconducting Magnet
66(7)
Problems
71(2)
Dynamics of Coupled Motion
73(20)
Conjugate Trajectories
73(2)
Particle Motion in a Solenoidal Field
75(5)
Transverse Coupled Oscillations
80(13)
Equations of Motion in Coupling Systems
80(1)
Coupled Beam Dynamics in Skew Quadrupoles
80(2)
Equations of Motion in a Solenoid Magnet
82(1)
Transformation Matrix for a Solenoid Magnet
83(3)
Betatron Functions for Coupled Motion
86(6)
Problems
92(1)
Higher-Order Perturbations
93(34)
Kinematic Perturbation Terms
93(2)
Control of the Central Beam Path
95(7)
Dipole Field Errors and Dispersion Function
102(3)
Dispersion Function in Higher Order
105(9)
Chromaticity in Higher Approximation
107(3)
Nonlinear Chromaticity
110(4)
Perturbation Methods in Beam Dynamics
114(13)
Periodic Distribution of Statistical Perturbations
115(6)
Statistical Methods to Evaluate Perturbations
121(5)
Problems
126(1)
Hamiltonian Nonlinear Beam Dynamics
127(36)
Higher-Order Beam Dynamics
127(9)
Multipole Errors
127(4)
Nonlinear Matrix Formalism
131(5)
Aberrations
136(16)
Geometric Aberrations
137(6)
Filamentation of Phase Space
143(4)
Chromatic Aberrations
147(2)
Particle Tracking
149(3)
Hamiltonian Perturbation Theory
152(11)
Tune Shift in Higher Order
158(2)
Problems
160(3)
Charged Particle Acceleration
163(66)
Accelerating Fields in Resonant rf Cavities
163(18)
Wave Equation
164(1)
Waveguide Modes
165(5)
rf Cavities
170(5)
Cavity Losses and Shunt Impedance
175(4)
Determination of rf Parameters
179(2)
Beam-Cavity Interaction
181(27)
Coupling Between rf Field and Particles
181(6)
Beam Loading and rf System
187(5)
Higher-Order Mode Losses in an rf Cavity
192(5)
Beam Loading in Circular Accelerators
197(11)
Higher-Order Phase Focusing
208(12)
Path Length in Higher Order
208(2)
Higher-Order Phase Space Motion
210(4)
Stability Criteria
214(6)
FODO Lattice and Acceleration
220(9)
Transverse Beam Dynamics and Acceleration
222(3)
Adiabatic Damping
225(2)
Problems
227(2)
Synchrotron Radiation
229(40)
Theory of Synchrotron Radiation
229(7)
Radiation Field
229(7)
Synchrotron Radiation Power and Energy Loss
236(5)
Spatial Distribution of Synchrotron Radiation
241(4)
Synchrotron Radiation Spectrum
245(24)
Radiation Field in the Frequency Domain
246(5)
Spectral Distribution in Space and Polarization
251(9)
Angle-Integrated Spectrum
260(7)
Problems
267(2)
Hamiltonian Many-Particle Systems
269(36)
The Vlasov Equation
269(10)
Betatron Oscillations and Perturbations
275(2)
Damping
277(2)
Damping of Oscillations in Electron Accelerations
279(12)
Damping of Synchrotron Oscillations
279(6)
Damping of Vertical Betatron Oscillations
285(2)
Robinson's Damping Criterion
287(3)
Damping of Horizontal Betatron Oscillations
290(1)
The Fokker-Planck Equation
291(14)
Stationary Solution of the Fokker-Planck Equation
294(4)
Particle Distribution Within a Finite Aperture
298(3)
Particle Distribution in the Absence of Damping
301(1)
Problems
302(3)
Particle Beam Parameters
305(20)
Particle Distribution in Phase Space
305(6)
Diffusion Coefficient and Synchrotron Radiation
305(3)
Quantum Excitation of Beam Emittance
308(1)
Horizontal Equilibrium Beam Emittance
308(1)
Vertical Equilibrium Beam Emittance
309(2)
Equilibrium Energy Spread and Bunch Length
311(2)
Phase-Space Manipulation
313(7)
Exchange of Transverse Phase-Space Parameters
313(1)
Exchange of Longitudinal Phase-Space Parameters
314(6)
Polarization of Particle Beam
320(5)
Problems
323(2)
Collective Phenomena
325(81)
Statistical Effects
325(7)
Schottky Noise
326(2)
Stochastic Cooling
328(1)
Touschek Effect
328(2)
Intra-Beam Scattering
330(2)
Collective Self Fields
332(13)
Transverse Self Fields
332(2)
Fields from Image Charges
334(4)
Space-Charge Effects
338(5)
Longitudinal Space-Charge Field
343(2)
Beam-Current Spectrum
345(5)
Wake Fields and Impedance
350(18)
Definitions of Wake Field and Impedance
353(8)
Impedances in an Accelerator Environment
361(7)
Coasting-Beam Instabilities
368(14)
Negative-Mass Instability
368(4)
Dispersion Relation
372(6)
Landau Damping
378(2)
Transverse Coasting-Beam Instability
380(2)
Longitudinal Single-Bunch Effects
382(8)
Potential-Well Distortion
382(8)
Transverse Single-Bunch Instabilities
390(9)
Beam Break-Up in Linear Accelerators
390(2)
Fast Head-Tail Effect
392(5)
Head-Tail Instability
397(2)
Multi-Bunch Instabilities
399(7)
Problems
404(2)
Insertion Device Radiation
406(29)
Particle Dynamics in a Undulator
407(2)
Undulator Radiation
409(3)
Undulator Radiation Distribution
412(17)
Elliptical Polarization
429(6)
Problems
434(1)
Appendix 435(10)
References 445(8)
Suggested Reading 453(8)
Author Index 461(4)
Subject Index 465