Atjaunināt sīkdatņu piekrišanu

Pattern Recognition: 44th DAGM German Conference, DAGM GCPR 2022, Konstanz, Germany, September 2730, 2022, Proceedings 1st ed. 2022 [Mīkstie vāki]

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: Paperback / softback, 608 pages, height x width: 235x155 mm, weight: 943 g, 179 Illustrations, color; 11 Illustrations, black and white; XIV, 608 p. 190 illus., 179 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Computer Science 13485
  • Izdošanas datums: 24-Sep-2022
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031167872
  • ISBN-13: 9783031167874
  • Mīkstie vāki
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 608 pages, height x width: 235x155 mm, weight: 943 g, 179 Illustrations, color; 11 Illustrations, black and white; XIV, 608 p. 190 illus., 179 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Computer Science 13485
  • Izdošanas datums: 24-Sep-2022
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031167872
  • ISBN-13: 9783031167874
This book constitutes the refereed proceedings of the 44th DAGM German Conference on Pattern Recognition, DAGM GCPR 2022, which was held during September 27 – 30, 2022.

The 37 papers presented in this volume were carefully reviewed and selected from 78 submissions. They were organized in topical sections as follows: ?machine learning methods; unsupervised, semi-supervised and transfer learning; interpretable machine learning; low-level vision and computational photography; motion, pose estimation and tracking; 3D vision and stereo; detection and recognition; language and vision; scene understanding; photogrammetry and remote sensing; pattern recognition in the life and natural sciences; systems and applications.

Machine Learning Methods.- Unsupervised, Semi-supervised and Transfer Learning.- Interpretable Machine Learning.- Low-level Vision and Computational Photography.- Motion, Pose Estimation and Tracking.- 3D Vision and Stereo.- Detection and Recognition.- Language and Vision.- Scene Understanding.- Photogrammetry and Remote Sensing.- Pattern Recognition in the Life and Natural Sciences.- Systems and Applications.