Atjaunināt sīkdatņu piekrišanu

E-grāmata: Pattern Recognition and Computer Vision: 7th Chinese Conference, PRCV 2024, Urumqi, China, October 18-20, 2024, Proceedings, Part III

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts - PDF+DRM
  • Cena: 77,31 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This 15-volume set LNCS 15031-15045 constitutes the refereed proceedings of the 7th Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2024, held in Urumqi, China, during October 18–20, 2024.
The 579 full papers presented were carefully reviewed and selected from 1526 submissions. The papers cover various topics in the broad areas of pattern recognition and computer vision, including machine learning, pattern classification and cluster analysis, neural network and deep learning, low-level vision and image processing, object detection and recognition, 3D vision and reconstruction, action recognition, video analysis and understanding, document analysis and recognition, biometrics, medical image analysis, and various applications.

ST-RetNet: A Long-term Spatial-Temporal Traffic Flow Prediction Method.-
Foreground-Background Partitioning and Feature Fusion for Weakly Supervised
Fine-grained Image Recognition.- DARTS-CGW: Research on Differentiable Neural
Architecture Search Algorithm Based on Coarse Gradient Weighting.-
PanoDthNet: Depth estimation based on indoor and outdoor panoramic images.- A
Supervised Domain Adaptation Method with Alignment Regularization for
Low-light Facial Expression Recognition.- DiffuSaliency: Synthesizing
Multi-Object Images with Masks for Semantic Segmentation Using Diffusion and
Saliency Detection.- EFOA: Enhancing Out-of-Distribution Detection by Fake
Outlier Augmentation.- Fine-tuning of CLIP in Few-shot Scenarios via
Supervised Contrastive Learning.- A Stereo Matching Method for Specular
Objects via Cascaded Network and Joint Supervision.- An Asymmetric Game
Theoretic Learning Model.- Learning 360° Optical Flow using Tangent Images
and Transformer.- ODAdapter: An effective method of Semi-Supervised Object
Detection for Aerial Images.- Frequency-domain Transformation-based Dynamic
Gesture Recognition with skeleton.- MRGN: Multiscale Relation-gated Graph
Network for Entity Alignment.- Adaptive Selective Knowledge Distillation: not
blindly accepting teachers as Oracles.- Periodic Iterative
Segmentation-Colorization Training: Line Drawing Colorization Using Text Tag
with CBAMCat.- Histogram Prediction and Equalization for Indoor Monocular
Depth Estimation.- SheepNet: Rapid Sheep Face Recognition Based on Attention
and Knowledge Distillation.- LPMANet:A Lightweight Partial Multilayer
Aggregation Network for Tiny Drone Detection.- HiTraj: Heterogeneous
Interaction Learning with Transformers for Trajectory Prediction.- Adaptive
Knowledge Matching for Exemplar-Free Class-Incremental Learning

Focusing on Significant Guidance: Preliminary Knowledge Guided Distillation.-
ESTOR:Enumerate-Specify-Tutor Mechanism Used of Lexicon in Chinese NER.-
EBSD: Short Text Sentiment Classification Using Sentence Vector Enhancement
Mechanism.- CEDP-YOLO: UAV Object Detection Based on Context Enhancement and
Dynamic Perception.- TLLFusion: An End-to-End Transformer-Based Method for
Low-Light Infrared and Visible Image Fusion.- BD-YOLO : High-precision
lightweight concrete bubble detector based on YOLOv7.- Semantic
Consistency-Enhanced Refined Hashing for Fine-Grained Image Retrieval.-
Frequency Feature Enhanced Mix Calibration Attention Network for Sequential
Recommendation.- CFMISA: Cross-modal Fusion of Modal Invariant and Specific
Representations for Multimodal Sentiment Analysis.- A Privacy-Preserving
Source Code Vulnerability Detection Method.- Physically Informed Prior and
Cross-Correlation Constraint for Fine-grained Road Crack Segmentation.-
AFSNet: Adaptive Feature Suppression Network for Remote Sensing Image Change
Detection.- BIVL-Net: Bidirectional Vision-Language Guidance for Visual
Question Answering.- Enhancing Task Identification through Pseudo-OOD
Features for Class-Incremental Learning.