Atjaunināt sīkdatņu piekrišanu

Pattern Recognition and Computer Vision: Third Chinese Conference, PRCV 2020, Nanjing, China, October 1618, 2020, Proceedings, Part II 1st ed. 2020 [Mīkstie vāki]

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: Paperback / softback, 693 pages, height x width: 235x155 mm, weight: 1074 g, 227 Illustrations, color; 91 Illustrations, black and white; XV, 693 p. 318 illus., 227 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Computer Science 12306
  • Izdošanas datums: 15-Oct-2020
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030606384
  • ISBN-13: 9783030606381
  • Mīkstie vāki
  • Cena: 91,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 107,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 693 pages, height x width: 235x155 mm, weight: 1074 g, 227 Illustrations, color; 91 Illustrations, black and white; XV, 693 p. 318 illus., 227 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Computer Science 12306
  • Izdošanas datums: 15-Oct-2020
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030606384
  • ISBN-13: 9783030606381
The three-volume set LNCS 12305, 12306, and 12307 constitutes the refereed proceedings of the Third Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2020, held virtually in Nanjing, China, in October 2020.





The 158 full papers presented were carefully reviewed and selected from 402 submissions. The papers have been organized in the following topical sections: Part I: Computer Vision and Application, Part II: Pattern Recognition and Application, Part III: Machine Learning.

Computing methodologies.- Machine learning.- Machine learning approaches.- Neural networks.- Biometrics Tracking.- Image segmentation.- Video segmentation.- Object detection.- Object recognition.- Computer vision.- Artificial intelligence.- Machine learning algorithms.