Atjaunināt sīkdatņu piekrišanu

E-grāmata: Pavement Engineering: Principles and Practice

Edited by (University of Texas at El Paso, USA), Edited by (Worcester Polytechnic Institute, Massachusetts, USA)
  • Formāts: 818 pages
  • Izdošanas datums: 30-Dec-2022
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781000812558
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 156,54 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 818 pages
  • Izdošanas datums: 30-Dec-2022
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781000812558
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Pavement Engineering: Principles and Practice examines a wide range of topics in asphalt and concrete pavements from soil preparation and structural design to life cycle costing and economic analysis. This updated Fourth Edition covers all concepts and practices of pavement engineering in terms of materials, design, and construction methods for both flexible and rigid pavements and includes the latest developments in recycling, sustainable pavement materials, and resilient infrastructure. New and updated topics include material characterization concepts and tests, pavement management concepts, probabilistic examples of life cycle cost analysis, end-of-life considerations, waste plastic in asphalt, pervious concrete, pavement monitoring instrumentation and data acquisition, and more. The latest updated references, state of the art reviews, and online resources have also been included.



Pavement Engineering: Principles and Practice examines a wide range of topics in asphalt and concrete pavements, from soil preparation and structural design to life cycle costing and economic analysis.

Preface xxi
Acknowledgements xxii
Author/Editor Biographies xxv
List of Contributors
xxvii
Chapter 1 Introduction and Description of Pavements
1(16)
1.1 Importance
1(1)
1.2 Functions
1(1)
1.3 Design and Construction
2(1)
1.4 Maintenance and Rehabilitation
3(1)
1.5 Important Issues
4(1)
1.6 Functional Requirements
4(1)
1.7 Types and Uses of Pavements
5(1)
1.8 Different Features of Typical Asphalt Pavements
6(2)
1.9 Different Features of Typical Concrete Pavements
8(5)
1.9.1 Jointed Plain Concrete Pavements
8(1)
1.9.2 Jointed Reinforced Concrete Pavements
9(1)
1.9.3 Continuously Reinforced Concrete Pavements
10(1)
1.9.4 Composite Pavements
11(1)
1.9.5 Selecting the Type of Pavement
12(1)
1.10 Research on Pavements
13(2)
References
15(2)
Chapter 2 Standards
17(6)
2.1 Importance of Standards
17(1)
2.2 The American Society of Testing and Materials
17(1)
2.3 The American Society of State Highway and Transportation Officials
18(1)
2.4 Use of Standards in Materials Selection, Mix Design, and Structural Design
19(1)
2.5 Use of Standards in Quality Control in Construction
19(1)
2.6 Important Specifications
19(3)
References
22(1)
Chapter 3 Principles of Mix, Structural Design, and Construction of Asphalt Pavement
23(32)
3.1 Overview
23(1)
3.2 Traffic and Load Distribution Concept
23(2)
3.3 Materials and Layers
25(2)
3.3.1 Soils
26(1)
3.3.2 Aggregates
27(1)
3.3.3 Asphalt
27(1)
3.4 Environment
27(1)
3.5 Mix Design
28(2)
3.6 Structural Design
30(3)
3.7 Link Between Mix and Structural Design
33(1)
3.8 Theoretical Considerations for Structural Design
33(17)
3.8.1 Hooke's Theory of Elasticity
33(2)
3.8.2 Boussinesq's Method
35(3)
3.8.3 Application, Extension, and Refinement of Boussinesq's Method
38(1)
3.8.4 Burmister's Method for Two-Layer Systems
39(2)
3.8.5 Odemark's Method of Equivalent Thickness
41(2)
3.8.6 Fox and Acum and Fox's Solutions
43(5)
3.8.7 Computer Programs
48(2)
3.9 Principles of Good Construction
50(1)
3.10 Putting Everything Together
50(2)
References
52(3)
Chapter 4 Principles of Structural Design, Mix Design, and Construction of Concrete Pavements
55(42)
4.1 Overview
55(1)
4.2 Structural Design
56(1)
4.3 Theoretical Considerations
57(11)
4.3.1 Stresses Due to Curvature and Bending in Slabs
57(2)
4.3.2 Stresses Due to Temperature Curling
59(3)
4.3.3 Stresses and Deflections Due to Applied Loading
62(1)
4.3.3.1 Corner Slab Loading
63(3)
4.3.3.2 Interior Slab Loading
66(1)
4.3.3.3 Edge Slab Loading
67(1)
4.4 Computer Programs for Rigid Pavements
68(2)
4.5 Combined Stresses
70(1)
4.6 Stresses Due to Friction
70(2)
4.7 Joint Opening
72(1)
4.8 Joints
72(17)
4.8.1 Transverse Contraction Joints
75(1)
4.8.2 Longitudinal Joints
75(1)
4.8.3 Construction Joints
75(1)
4.8.4 Expansion Joints
76(1)
4.8.5 Joint Design
77(1)
4.8.6 Joint Spacing for Airfields
78(1)
4.8.7 Variable Joint Spacing
79(1)
4.8.8 Skewed Joints
80(1)
4.8.9 Aggregate Interlock Between Joints
80(1)
4.8.10 Design of Dowels
81(1)
4.8.11 Dowel Diameter Design
81(1)
4.8.11.1 Allowable Bearing Stress
81(1)
4.8.11.2 Bearing Stress on One Dowel
82(4)
4.8.12 Tiebar Steel Design
86(2)
4.8.13 Traffic and Loads
88(1)
4.9 Concrete Properties and Mix Design
89(5)
4.9.1 Hydration, Strength, and Materials
90(1)
4.9.1.1 Construction
91(3)
References
94(3)
Chapter 5 Traffic
97(20)
5.1 Different Types of Highway Traffic
97(1)
5.2 Measurement of Traffic Loads
97(3)
5.3 Load Equivalency Factor and Equivalent Single-Axle Load
100(7)
5.3.1 Flexible Pavements
102(1)
5.3.2 Rigid Pavements
103(4)
5.4 Alternative Load Equivalent Factor Concept
107(1)
5.5 Equivalent Single-Wheel Load
107(4)
5.5.1 Conversion to Equivalent Gear
108(2)
5.5.2 Conversion to Equivalent Annual Departure
110(1)
5.6 Tire Pressure
111(1)
5.7 Speed
112(2)
5.7.1 Effect of Load and Tire Pressure
113(1)
5.8 Aircraft Loading, Gear Configuration, and Tire Pressure
114(2)
References
116(1)
Chapter 6 Drainage
117(40)
6.1 Sources and Effects of Water
117(1)
6.2 Estimating Flow
117(4)
6.2.1 Return Period
121(1)
6.2.2 Rainfall Intensity
121(1)
6.3 Hydroplaning and Surface Drainage System
121(7)
6.4 Inlets
128(1)
6.5 Subsurface Drainage System
128(4)
6.5.1 Groundwater
128(1)
6.5.2 Water Entering Through Cracks
129(2)
6.5.3 Artesian Aquifers
131(1)
6.5.4 Melting Snow
131(1)
6.6 Design of Subsurface Drainage Structures
132(11)
6.6.1 Design of Permeable Base
135(3)
6.6.1.1 Materials for Permeable Base
138(1)
6.6.2 Design of Separator or Filter Layer
139(1)
6.6.2.1 Geotextile Separator Layer
139(1)
6.6.3 Design of Edge Drains
140(3)
6.7 Consideration of Drainage in Pavement Design
143(2)
6.8 Pumping in Rigid Pavements
145(1)
6.9 Use of Software for Design of Drainage Structures
145(10)
References
155(2)
Chapter 7 Soil
157(46)
7.1 Overview
157(1)
7.2 Soils in Subgrade
157(1)
7.3 Mass-Volume Relationships
158(1)
7.4 Grain Size Distribution: Gradation
159(3)
7.5 Effects of Water
162(1)
7.6 Soil Classification
163(8)
7.6.1 AASHTO Method
163(3)
7.6.2 Unified Soil Classification System (ASTM)
166(5)
7.7 Density and Optimum Moisture Content
171(1)
7.8 Hydraulic Conductivity
172(1)
7.9 Frost Susceptibility
173(4)
7.10 Swell Potential
177(1)
7.11 Stiffness and Strength of Soils
178(8)
7.11.1 California Bearing Ratio Test (AASHTO T 193)
180(1)
7.11.2 Resilient Modulus Test (AASHTO T 307)
181(2)
7.11.3 Dynamic Cone Penetrometer (ASTM D 6951)
183(3)
7.11.4 Light Weight Deflectometer
186(1)
7.12 Subgrade Soil Tests for Rigid Pavements
186(2)
7.12.1 Plate Load Test
186(2)
7.13 Subbase and Unstabilized Base
188(1)
7.14 Soil Stabilization Concepts and Methods: Chemical and Mechanical
189(11)
7.14.1 Mechanical Stabilization by Densification or Compaction
189(1)
7.14.1.1 Effect of Compaction on Soil Properties
190(1)
7.14.1.2 Field Compaction
190(1)
7.14.1.3 Field Control
190(1)
7.14.1.4 Measuring Devices
190(1)
7.14.1.5 Intelligent Soil Compaction System
190(1)
7.14.2 Use of Geosynthetics
191(1)
7.14.3 Lime Treatment of Soils
192(2)
7.14.4 Cement Treatment of Soil
194(2)
7.14.4.1 Mixture Design Process
196(2)
7.14.5 Asphalt (Bituminous) Treated Soil
198(1)
7.14.5.1 Stabilization Mechanism with Asphalt Treatment
198(1)
7.14.5.2 Mix Design Procedure
199(1)
7.15 Dust Control
200(1)
References
201(2)
Chapter 8 Aggregates for Asphalt and Concrete Mixes
203(22)
8.1 Definition, Parent Rock, and Types
203(1)
8.2 Suitability for Application
204(2)
8.3 Production
206(1)
8.4 Overview of Desirable Properties
207(1)
8.4.1 Properties Critical for Structural Layers
207(1)
8.4.2 Properties Critical for Drainage Layers
207(1)
8.4.3 Properties Critical for Asphalt Mix Layers
207(1)
8.4.4 Properties Critical for Cement Concrete Layers
207(1)
8.5 Gradation for Asphalt Pavements
208(6)
8.5.1 Aggregate Tests
210(4)
8.6 Specific Gravities and Absorption
214(3)
8.7 Cleanliness and Deleterious Materials
217(1)
8.8 Toughness or Resistance against Abrasion Loss
217(1)
8.9 Particle Shape and Surface Texture
218(2)
8.10 Durability/Soundness
220(1)
8.11 Expansive Characteristics
220(1)
8.12 Polishing and Frictional Characteristics
220(1)
8.13 Aggregate Tests Specifically for Concrete
221(1)
8.13.1 Fineness Modulus (ASTM C 125)
221(1)
8.13.2 Gradation
221(1)
8.13.3 Bulk Density and Voids in Aggregates Test
222(1)
8.14 Automated Aggregate Analysis (AASHTO TP 81 and PP 64)
222(1)
8.15 Artificial Aggregates
222(2)
References
224(1)
Chapter 9 Asphalt and Emulsions
225(40)
9.1 Asphalt Binder
225(1)
9.2 Naturally Occurring Asphalts
225(1)
9.2.1 Lake Asphalt
225(1)
9.2.2 Rock Asphalt
226(1)
9.2.3 Gilsonite
226(1)
9.3 Refined Asphalt from Crude Oil
226(1)
9.4 Safe Delivery, Storage, and Handling of Asphalts
227(1)
9.4.1 Causes of Hazards and Precautions
227(1)
9.4.2 Health Hazards
227(1)
9.4.3 Precautions and Good Practices
228(1)
9.5 Asphalt Bi nder Properties
228(4)
9.5.1 Specific Gravity: ASTM D 70
228(1)
9.5.2 Cleveland Open Cup Method (Flash Point): ASTM D 92
229(1)
9.5.3 Solubility Test: ASTM D 2042
229(1)
9.5.4 Spot Test: AASHTO T 102
229(1)
9.5.5 Penetration: ASTM D 5
229(1)
9.5.6 Viscosity Tests
229(1)
9.5.7 Softening Point (Ring and Ball) Test: ASTM D 36
230(1)
9.5.8 Fraass Breaking Point Test: BS EN 12593, BS 2000-8
230(1)
9.5.9 Ductility: ASTM D 113
230(1)
9.5.10 Thin Film Oven Test (TFOT): ASTM D 1754
231(1)
9.5.11 Rolling Thin Film Oven Test (RTFOT): ASTM D 2872, BS EN 12591, AASHTO T 240
231(1)
9.6 Asphalt Binder Properties and Pavement Distress and Performance
232(2)
9.6.1 Aging of Asphalt Binder
232(2)
9.6.1.1 Hardening
234(1)
9.7 Stiffness
234(5)
9.7.1 Viscosity for Stiffness
238(1)
9.8 Viscoelastic Nature of Asphalt and Direct Measurement of Stiffness
239(1)
9.9 Tensile Behavior
240(1)
9.10 Superpave (Superior Performing Asphalt Pavements)
241(13)
9.10.1 High-Temperature Viscosity
242(1)
9.10.2 Complex Modulus and Phase Angle
242(2)
9.10.3 Aging Tests
244(1)
9.10.4 DSR Tests Conducted on Aged Asphalt
244(1)
9.10.5 Low-Temperature Stiffness (ASTM D 6648, AASHTO T 313)
245(1)
9.10.6 Direct Tension Test (ASTM D 6723, AASHTO T 314)
246(1)
9.10.7 Superpave Requirements
246(3)
9.10.7.1 Explanation
249(3)
9.10.8 Multiple Stress Creep Recovery Test (AASHTO T 350, Specification, AASHTO M 332)
252(2)
9.11 Recent Developments
254(1)
9.12 Recovery of Asphalt Binder from Asphalt Mix
255(1)
9.13 Adhesion Properties
256(1)
9.14 Asphalt Emulsions
257(5)
9.14.1 Properties
257(1)
9.14.2 Tests for Asphalt Emulsions
258(2)
9.14.3 Classification of Emulsions and Selection
260(2)
References
262(3)
Chapter 10 Distress and Performance
265(14)
10.1 Distresses in Asphalt Pavements
265(4)
10.1.1 Bleeding
265(1)
10.1.2 Block Cracking
265(1)
10.1.3 Corrugations
265(1)
10.1.4 Delamination
265(2)
10.1.5 Edge Cracks
267(1)
10.1.6 Fatigue Cracks and Edge Fatigue Cracks
267(1)
10.1.7 Longitudinal Joint Cracks
267(1)
10.1.8 Polished Aggregate
267(1)
10.1.9 Potholes
267(1)
10.1.10 Raveling
268(1)
10.1.11 Reflective Cracking
268(1)
10.1.12 Rutting
268(1)
10.1.13 Slippage Crack
268(1)
10.1.14 Thermal Cracks
268(1)
10.2 Distresses in Concrete Pavements
269(3)
10.2.1 Corner Breaks
269(1)
10.2.2 Durability Cracking (or "D" Cracking)
270(1)
10.2.3 Longitudinal Cracking
270(1)
10.2.4 Transverse Cracking
270(1)
10.2.5 Spalling of Transverse Joints
270(1)
10.2.6 Map Cracking and Scaling
270(1)
10.2.7 Polished Aggregate
271(1)
10.2.8 Popouts
271(1)
10.2.9 Blowups
271(1)
10.2.10 Faulting of Transverse Joints and Cracks
271(1)
10.2.11 Lane-to-Shoulder Drop-Off
271(1)
10.2.12 Lane-to-Shoulder Separation
271(1)
10.2.13 Patch/Patch Deterioration
271(1)
10.2.14 Water Bleeding and Pumping
272(1)
10.2.15 Punchouts
272(1)
10.2.16 Joint Seal Damage
272(1)
10.3 Consideration of Performance
272(2)
10.4 Damage
274(1)
10.5 Forensic Investigation for Determination of Type and Cause of Distress
275(3)
10.5.1 Forensic Investigation Plan
275(1)
10.5.2 Nondestructive and Destructive Tests
275(3)
References
278(1)
Chapter 11 Consideration of Major Distress Mechanisms and Material Characterization for Asphalt Pavements
279(66)
11.1 Fatigue Cracking
279(24)
11.1.1 Material Characterization Tests
282(1)
11.1.1.1 Indirect Tensile Strength: Test Method
283(1)
11.1.1.2 Resilient Modulus
283(1)
11.1.1.3 Dynamic Modulus (AASHTO TP 62-03)
283(12)
11.1.1.4 Texas Overlay Tester (Texas OT)
295(3)
11.1.2 Models
298(2)
11.1.2.1 Simplified Viscoelastic Continuum Damage (S-VECD) Model
300(1)
11.1.3 Definition of Failure
300(1)
11.1.4 Use of Models
301(1)
11.1.5 Relationship Between Mix Design and Fatigue Performance
302(1)
11.1.6 Relationship Between Pavement Structure and Fatigue Performance
302(1)
11.1.6.1 Steps for Avoiding Premature Fatigue Cracking
302(1)
11.2 Thermal Cracking
303(15)
11.2.1 Material Characterization
304(1)
11.2.2 Models
305(1)
11.2.2.1 Environmental Conditions
305(1)
11.2.2.2 Regression Equation Approach (Hajek and Haas, 1972)
306(1)
11.2.2.3 Fracture Mechanics Approach: SHRP Thermal Cracking Model
307(2)
11.2.2.4 Models for Cracking
309(1)
11.2.3 Cracking and Properties of Asphalts and Aggregates
310(8)
11.3 Rutting or Permanent Deformation
318(16)
11.3.1 Material Characterization
318(1)
11.3.1.1 Creep Testing
319(2)
11.3.1.2 Triaxial Test
321(1)
11.3.2 Models
322(1)
11.3.2.1 Consideration of Rutting in Asphalt Mix Only
323(1)
11.3.2.2 Statistical Predictive Models on the Basis of Different Properties (Baladi, 1989)
324(1)
11.3.2.3 Layered Vertical Permanent Strain Approach
324(2)
11.3.2.4 Permanent Strain Rate Method
326(1)
11.3.2.5 Plastic-Elastic Vertical Strain Ratio Method
326(1)
11.3.2.6 Rutting Rate Method (Majidzadeh, 1981)
327(1)
11.3.2.7 Alternate Model Relating Tertiary Flow Characteristics to Mix Properties
327(3)
11.3.2.8 Models for Unbound Materials
330(1)
11.3.2.9 Ayres Combined Model for Subgrade and Granular Materials (NCHRP, 2004)
331(1)
11.3.2.10 Equivalent Temperature Concept
332(1)
11.3.2.11 El-Basyouny and Witczak Model (NCHRP, 2004)
333(1)
11.3.3 Definition of Failure
334(1)
11.4 Smooth ness Consideration
334(5)
11.5 Top-Down Cracking
338
11.5.1 Pavement Surface Characteristics
339(1)
References
340(5)
Chapter 12 Mix and Structural Design of Asphalt Mix Layers
345(60)
12.1 Physical and Volumetric Properties of Asphalt Mix
345(5)
12.1.1 Bulk-Specific Gravity of Compacted Asphalt Mix (Gmb)
348(1)
12.1.2 Theoretical Maximum Density or Maximum Specific Gravity of the Mix (Gmm)/Rice Specific Gravity
348(2)
12.2 Mix Design Methods
350(17)
12.2.1 Hveem Method (ASTM D 1560, D 1561)
350(6)
12.2.2 Marshall Method
356(4)
12.2.3 Superpave Method
360(4)
12.2.3.1 Mix Design Systems of South Africa, France, the United Kingdom, and Australia
364(3)
12.3 Balanced Mix Design (BMD)
367(3)
12.4 Structural Design
370(30)
12.4.1 Empirical Methods
370(1)
12.4.1.1 California Bearing Ratio Method
370(1)
12.4.1.2 American Association of State Highway and Transportation Officials (AASHTO) Method
370(4)
12.4.2 Mechanistic-Empirical Methods
374(4)
12.4.2.1 Design of Low Volume Roads
378(1)
12.4.2.2 Example of Structural Design Procedure Using Mechanistic Principles
379(2)
12.4.2.3 NCHRP 1-37A Mechanistic-Empirical Design Guide
381(19)
12.5 Thickness of Hot Mix Asphalt Layers to Avoid Excessive Permeability
400(2)
References
402(3)
Chapter 13 Construction of Asphalt Pavements
405(30)
13.1 Overview
405(2)
13.1.1 Production
405(2)
13.1.2 Transportation and Laydown
407(1)
13.2 Description and Requirements of Components in Hot Mix Asphalt-Producing Plants
407(7)
13.2.1 Aggregate Stockpiles
407(1)
13.2.2 Cold Feed Bins
408(1)
13.2.3 Drum Mix Plant
409(1)
13.2.4 Hot Elevator and Bins
409(1)
13.2.5 Pugmill
410(1)
13.2.6 Hauling and Storage
411(1)
13.2.7 Drum Plant
411(2)
13.2.8 Dust Collection from HMA Plants
413(1)
13.2.9 Asphalt Storage Tanks
413(1)
13.3 Equipment Used for Transportation, Laydown, and Compaction
414(4)
13.3.1 Trucks
414(2)
13.3.2 Pavers
416(1)
13.3.3 Rollers
417(1)
13.4 Important Factors
418(2)
13.5 Construction of Granular Layers
420(1)
13.5.1 Recycled Concrete Aggregate (RCA) and Recycled Concrete Material (RCM) in Granular or Stabilized Base Course
420(1)
13.5.2 Steps in the Construction of an Asphalt Pavement
420(1)
13.6 Specifications
421(7)
13.6.1 Variability of Materials
422(5)
13.6.2 Use of Quality Control Charts
427(1)
13.7 Preparation of Subgrade and Construction of Base and Subbase Layers
428(1)
13.8 Quality Control and Quality Assurance
428(2)
13.9 Construction of Longitudinal Joints
430(4)
13.9.1 Techniques of Constructing Good Longitudinal Joints
431(1)
13.9.1.1 Combination of Notched Wedge Joint, Rubberized Asphalt Tack Coat, and Minimum Joint Density Requirements
431(1)
13.9.1.2 Rubberized Asphalt Tack Coat and Minimum Joint Density Requirements
432(1)
13.9.1.3 Notched Wedge Joint and Minimum Joint Density Requirements
432(1)
13.9.1.4 Cutting Wheel and Minimum Joint Density Requirements
432(1)
13.9.1.5 Infrared Joint Heating and Minimum Joint Density Requirements
433(1)
References
434(1)
Chapter 14 Concrete Fundamentals for Rigid Pavements
435(8)
14.1 Concrete
435(1)
14.2 Aggregates
436(1)
14.3 Cement
436(3)
14.3.1 Types of Portland Cement
438(1)
14.4 Water
439(1)
14.5 Hydration
439(1)
14.6 Steel in Concrete
440(2)
References
442(1)
Chapter 15 Distress Models and Material Characterization for Concrete Pavements
443(24)
15.1 Distresses and Models
443(18)
15.1.1 Cracking
443(1)
15.1.1.1 Fatigue Cracking in JPCP
443(2)
15.1.1.2 Zero-Maintenance Design Fatigue Model
445(1)
15.1.1.3 Calibrated Mechanistic Design Fatigue Model
445(1)
15.1.1.4 ERES-COE Fatigue Model
446(1)
15.1.1.5 PCA Fatigue Model
446(1)
15.1.1.6 ARE Fatigue Model
446(1)
15.1.1.7 Vesic Distress Model
446(1)
15.1.1.8 RISC Distress Function
446(1)
15.1.1.9 Transverse Cracking
447(1)
15.1.2 Transverse Joint Faulting in Jointed Plain Concrete Pavements
448(1)
15.1.2.1 Models to Predict Faulting
449(1)
15.1.2.2 Slab Corner Deflections
449(5)
15.1.3 Erosion Characterization of Base/Subbase
454(1)
15.1.4 Characterizing Free Water Within a Pavement Structure
454(1)
15.1.5 PRS M-E Transverse Joint-Faulting Prediction Model
455(1)
15.1.6 Punchouts in Continuously Reinforced Concrete Pavements
456(1)
15.1.6.1 Development of CRCP Punchout Models
457(1)
15.1.6.2 Punchout Distress Model
458(1)
15.1.7 Smoothness Considerations
458(3)
15.2 Tests for Concrete
461(3)
15.2.1 Flexural Strength Tests
461(1)
15.2.2 Compressive Strength
462(1)
15.2.3 Tensile Strength
462(1)
15.2.4 Coefficient of Thermal Expansion Test
463(1)
15.2.5 Fatigue Testing for PCC
464(1)
15.3 Composite Pavements
464(1)
15.4 Distress Mechanism for Design of Composite Pavements
465(1)
References
465(2)
Chapter 16 Mix Design and Structural Design for Concrete Pavements
467(58)
16.1 Mix Design
467(16)
16.1.1 Concrete Strength
467(1)
16.1.2 Water-to-Cementitious Materials Ratio
468(1)
16.1.3 Selection of the Water-to-Cementitious Materials Ratio
469(3)
16.1.4 Aggregates
472(1)
16.1.5 Air Content in Concrete
473(1)
16.1.6 Slump
473(1)
16.1.7 Water Content
473(3)
16.1.8 Cementing Materials Content and Type
476(1)
16.1.9 Admixtures
477(1)
16.1.10 Example of Mix Design
478(5)
16.2 Structural Design
483(38)
16.2.1 AASHTO Method (AASHTO, 1993)
483(1)
16.2.2 Design Input Parameters
484(1)
16.2.2.1 Reliability
484(1)
16.2.2.2 Serviceability
484(1)
16.2.2.3 Drainage Coefficient (Cd)
484(1)
16.2.2.4 Load Transfer Coefficient (J)
484(6)
16.2.3 Rigid Foundation at Shallow Depth
490(1)
16.2.4 Effective Modulus of Subgrade Reaction
491(3)
16.2.4.1 Software Solutions
494(1)
16.2.4.2 AASHTO 1998 Supplement to Design Guide
494(6)
16.2.4.3 MEPDG Design Guide
500(6)
16.2.4.4 Continuously Reinforced Concrete Pavements
506(4)
16.2.4.5 CRCP Design Criteria
510(1)
16.2.4.6 Structural Performance
511(1)
16.2.4.7 Functional Performance
512(1)
16.2.4.8 Reinforcement for CRCP
512(1)
16.2.4.9 Design Methods for CRCP
513(1)
16.2.4.10 AASHTO MEPDG
513(1)
16.2.4.11 AASHTO-86/93 Design Procedure
514(1)
16.2.4.12 Reinforcement Design
515(1)
16.2.4.13 Design Variables for Longitudinal Reinforcement: AASHTO Method
515(2)
16.2.4.14 Limiting Criteria
517(4)
16.2.4.15 Longitudinal Reinforcement Design Procedure
521(1)
16.3 Composite Pavements Structural Design
521(3)
References
524(1)
Chapter 17 Construction of Concrete Pavements
525(34)
17.1 Overview
525(1)
17.2 Concrete Production
525(2)
17.3 Preparation of Subgrade and Base
527(1)
17.4 Presetting Reinforcements such as Dowel Bars, Tiebars, and Continuous Reinforcement
527(4)
17.4.1 Dowel Bars
527(2)
17.4.2 Tiebars
529(1)
17.4.2.1 Reinforcing Steel (CRCP)
530(1)
17.5 PCC Slab Construction
531(4)
17.5.1 Slipform Paving
531(1)
17.5.2 Stringlines for Slipform Paver
532(1)
17.5.3 Fixed Form Paving
533(1)
17.5.4 Concrete Placement
533(1)
17.5.5 Consolidation
534(1)
17.5.6 Screeding
535(1)
17.6 Finishing
535(2)
17.6.1 Bullfloating
536(1)
17.6.2 Texturing
536(1)
17.6.3 Protection of Pavement Surface from Rain
536(1)
17.6.4 Construction Headers
537(1)
17.7 Curing
537(3)
17.7.1 Evaporation Rate
539(1)
17.8 Paving in Hot and Cold Weather Conditions
540(2)
17.8.1 Edge Slump
541(1)
17.8.2 Smoothness
541(1)
17.9 Jointing
542(1)
17.10 HIPERPAV Software
543(4)
17.11 Joint Sealing
547(10)
17.11.1 Quality Assurance/Quality Control (QC/QA)
548(1)
17.11.2 Differential Scanning Calorimeter (DSC)
549(1)
17.11.3 Blaine Fineness
549(1)
17.11.4 Gradation
550(1)
17.11.5 Penetration Resistance
550(1)
17.11.6 Cement Materials Temperature Profile (the "Coffee Cup Test")
550(1)
17.11.7 Water-Cement Ratio (Microwave Oven Test)
550(1)
17.11.8 Concrete and Subgrade Temperature and Environmental Conditions
550(1)
17.11.9 Concrete Strength (Early Age)
550(1)
17.11.10 Air Void Analyzer
550(1)
17.11.11 Maturity Test
551(1)
17.11.11.1 Consistency
552(1)
17.11.11.2 Air Content
553(1)
17.11.11.3 Density and Yield
553(1)
17.11.11.4 Sampling Fresh Concrete
554(3)
References
557(2)
Chapter 18 Precast Concrete Pavements
559(28)
18.1 Precast Pavement Applications
560(1)
18.2 Precast Concrete Pavement Concepts
561(6)
18.2.1 Intermittent Repairs of Concrete Pavements
561(2)
18.2.2 Continuous Application
563(1)
18.2.2.1 Jointed Precast Concrete Pavements
564(1)
18.2.2.2 Precast Prestressed Concrete Pavements
564(3)
18.3 Incrementally Connected Precast Concrete Pavements
567(1)
18.4 PCP Load Transfer System
567(1)
18.5 Transverse Joint Spacing Requirements
568(9)
18.5.1 Load Transfer Provisions
568(3)
18.5.1.1 Design of Load Transfer System
571(1)
18.5.1.2 Dowel Bar Slot Patching Material
571(1)
18.5.2 PCP Support System
572(1)
18.5.2.1 Bedding for Repair Applications
572(1)
18.5.2.2 Bedding for Continuous Application
572(3)
18.5.3 PCP Panel Fabrication
575(2)
18.6 Performance of Installed Precast Concrete Pavements
577(8)
18.6.1 Deflection Testi ng of JPrCP
578(1)
18.6.1.1 The 1-675 in Michigan (Intermittent Repair Project)
579(2)
18.6.1.2 The 1-15 in Ontario, California (Continuous Jointed PCP--Fort Miller Super-Slab JPrCP System)
581(1)
18.6.1.3 The 1-57 in Missouri (PPCP Projects Based on the Texas PPCP System)
582(2)
18.6.2 Summary of Findings from Field Testing
584(1)
18.7 Concrete Requirements
585(1)
References
586(1)
Chapter 19 Pavement Surface Characteristics
587(18)
19.1 Overview
587(8)
19.1.1 Pavement Surface Textures
587(1)
19.1.1.1 Microtexture
588(1)
19.1.1.2 Macrotexture
588(1)
19.1.1.3 The Next Generation Concrete Surface (NGCS) Texture
589(1)
19.1.2 Pavement Surface Friction
590(1)
19.1.2.1 Friction Number
590(1)
19.1.2.2 International Friction Index
591(1)
19.1.3 Pavement Surface-Tire Noise
592(1)
19.1.3.1 Measurement Techniques of Pavement-Tire Noise
592(1)
19.1.4 Ride Quality
592(3)
19.2 Pavement Surface Characteristics Design
595(5)
19.2.1 Aggregate Testing and Characterization
595(1)
19.2.1.1 Aggregate Composition/Structure and Mineral Hardness
595(1)
19.2.1.2 Aggregate Angularity, Shape, and Texture
595(1)
19.2.1.3 Abrasion/Wear Resistance
595(1)
19.2.1.4 Polish Resistance
595(1)
19.2.1.5 Soundness
596(1)
19.2.1.6 Aggregate Test Criteria
596(1)
19.2.2 Surface Mix Types and Texturing Techniques
597(1)
19.2.3 Friction Design Categories
597(1)
19.2.4 Project-Level Design Guidelines
597(3)
19.3 Pavement Surface Characteristics Management
600(1)
References
601(4)
Chapter 20 Maintenance and Rehabilitation of Pavements: Pavement Management Systems
605(42)
20.1 Overview
605(1)
20.2 Steps in PMS
605(1)
20.3 Different PMS Approaches
606(3)
20.3.1 Criteria for Making Decisions
608(1)
20.4 Distress Survey
609(6)
20.5 Maintenance and Rehabilitation of Asphalt Pavements
615(26)
20.5.1 Maintenance
615(1)
20.5.1.1 Primary Corrective Maintenance Activities
616(1)
20.5.1.2 Primary Preventive Maintenance Activities
616(3)
20.5.2 Recycling
619(1)
20.5.2.1 Hot In-Place Recycling
619(1)
20.5.2.2 Cold Recycling
620(1)
20.5.2.3 Cold Milling
620(6)
20.5.2.4 Hot Mix Recycling
626(15)
20.6 Maintenance and Rehabilitation of Concrete Pavements
641(2)
20.6.1 Joint and Crack Sealing
641(1)
20.6.2 Slab Stabilization
641(1)
20.6.3 Diamond Grinding
641(1)
20.6.4 Load Transfer Devices
642(1)
20.6.5 Precast Panels for Repair and Rehabilitation
642(1)
20.6.6 Portland Cement Concrete Overlays
643(1)
20.7 Warranty Projects
643(1)
References
644(3)
Chapter 21 Airport Pavements
647(30)
21.1 Types, Importance, and Specifications
647(1)
21.2 Structural Design of Airport Asphalt Mix Pavements
648(10)
21.2.1 Design of Flexible Pavement over Existing Pavement
656(1)
21.2.1.1 HMA Overlay on Existing Flexible Pavement
656(1)
21.2.1.2 HMA Overlay on Existing Rigid Pavement with or without Existing HMA Overlay
657(1)
21.3 Design of Concrete Pavements
658(2)
21.4 Design for Airport Pavements with Light Aircrafts
660(1)
21.5 Advanced Design Methods
661(4)
21.5.1 Asphalt Pavements
661(1)
21.5.1.1 For Vertical Strain EV on Top of the Subgrade
662(1)
21.5.1.2 For Horizontal Strain eh at the Bottom of the Surface Layer
662(1)
21.5.2 Rigid Pavements
663(2)
21.6 Nondestructive Testing and Rehabilitation of Airfield Pavements
665(2)
21.7 ACN-PCN
667(1)
21.8 Rehabilitation of PCC Airport Pavements
668(1)
21.9 Construction Quality Control and Acceptance Testing
669(1)
21.10 Constructing, Checking, and Improving Friction/Skid Resistance Drainage of Runways
670(2)
21.11 Asphalt Mixes for Airport Pavement
672(1)
21.11.1 Fuel-Resistant Mix
672(1)
21.11.2 Construction and Maintenance of Longitudinal Joints
673(1)
21.11.3 Time of Construction
673(1)
21.11.4 Deicing and Anti-Icing
673(1)
21.12 Maintenance of Airport Pavements
673(1)
21.13 Common Problems in Airport Pavements
674(1)
References
675(2)
Chapter 22 Nondestructive Tests
677(18)
22.1 Nuclear Gage
677(1)
22.2 Falling Weight Deflectometer
677(7)
22.2.1 Direct Use of Deflections
678(2)
22.2.1.1 Relationship Between Deflection Bowl Parameters and Stresses and Strains at Various Locations in the Pavement
680(1)
22.2.2 Back-Calculation
681(1)
22.2.2.1 Modeling Thin Layers
682(1)
22.2.2.2 Modeling Subgrades
682(1)
22.2.2.3 Modeling Bedrock
682(1)
22.2.2.4 Stress-Dependent Materials
682(1)
22.2.2.5 Spatial Variations
683(1)
22.2.2.6 Seasonal Variations
683(1)
22.2.2.7 Detection of Voids in PCC Pavements
683(1)
22.2.2.8 Detection of Nonresilient Pavement Layer Behavior
683(1)
22.2.2.9 Evaluation of Experimental Paving Materials
684(1)
22.2.2.10 Determination of Load Transfer Efficiency for Jointed PCC Pavements
684(1)
22.3 Other Applications of FWD Data for Rigid Pavements
684(1)
22.4 Light Weight Deflectometer (ASTM E 2583)
685(1)
22.5 Continuous Deflection Device
686(1)
22.6 GeoGauge (Soil Stiffness Gauge) for Soil Compaction
686(2)
22.7 Ground-Penetrating Radar
688(1)
22.8 Portable Seismic Pavement Analyzer
689(1)
22.9 Free Free Resonant Column Test
690(1)
22.10 Ultrasonic Test
691(1)
22.11 Magnetic Induction Tomography
691(1)
22.12 Infrared Devices
692(1)
22.13 Light Detection and Ranging (LIDAR) Systems
692(1)
References
693(2)
Chapter 23 Economic Analysis and Cost-Saving Concepts
695(16)
23.1 Economic Analysis
695(11)
23.1.1 Engineering Economy
695(1)
23.1.2 Concept of Life Cycle Cost
695(1)
23.1.3 Techniques
695(4)
23.1.4 Costs in Life Cycle Cost Analysis
699(1)
23.1.5 Probabilistic Approach
700(4)
23.1.6 Information on Life Cycle Cost Analysis for Pavements
704(1)
23.1.7 Software for Running Life Cycle Cost Analysis
704(2)
23.2 Cost-Saving Concepts
706(3)
23.2.1 Principles of Perpetual Pavements
706(2)
23.2.2 Economic Benefits of Recycling
708(1)
References
709(2)
Chapter 24 Instrumentation in Asphalt and Concrete Pavement
711(6)
24.1 Temperature
711(1)
24.2 Soil Moisture Content
712(1)
24.3 Frost Depth
712(1)
24.4 Strain in Asphalt or Concrete Pavement and Soil Layers
713(1)
24.5 Stress in Soil Layers
714(1)
24.6 Deflection in Layers
714(1)
24.7 Data Acquisition Systems
714(3)
Chapter 25 Specialty Applications
717(14)
25.1 Asphalt Mixtures
717(9)
25.1.1 Polymer-Modified Asphalt
717(1)
25.1.2 Asphalt Rubber Mixes
718(1)
25.1.3 Stone Matrix Asphalt
719(1)
25.1.4 Porous Friction Course
720(1)
25.1.5 Warm Mix Asphalt
721(2)
25.1.5.1 WMA and RAP
723(1)
25.1.5.2 Adoption
723(1)
25.1.5.3 Regular Use of WMA
724(1)
25.1.5.4 Mix Design
724(1)
25.1.5.5 Moisture Susceptibility Concern
725(1)
25.1.6 Ultrathin Wearing Course
726(1)
25.2 Concrete Whitetopping
726(1)
25.3 Porous Asphalt Pavements
727(1)
25.4 Pervious Concrete
728(1)
25.5 Waste Plastics in Hot Mix Asphalt (HMA) Layers
728(1)
References
729(2)
Chapter 26 Sustainable Pavement Engineering
731(24)
26.1 Overview
731(9)
26.1.1 Sustainable Construction (SC)
732(1)
26.1.1.1 Sustainability in Transportation and Pavement Engineering
733(2)
26.1.2 Life Cycle Assessment (LCA)
735(5)
26.1.3 Sustainable Construction Practices
740(1)
26.2 Sustainable Pavement Engineering
740(8)
26.2.1 Sustainable Asphalt of Flexible Pavements
741(3)
26.2.2 Sustainable Rigid or Concrete Pavements
744(1)
26.2.3 Measuring Sustainability
745(1)
26.2.4 Pavement and Rehabilitation Design to Improve Sustainability
745(2)
26.2.5 Construction Considerations
747(1)
26.2.6 User Phase Consideration
747(1)
26.2.7 Guidelines for Measuring and Improving Sustainability
747(1)
26.3 Resilient Pavements
748(2)
References
750(5)
Chapter 27 Environmental Mitigation in Transportation Projects
755(20)
27.1 Introduction
755(1)
27.2 How Transportation Impacts the Environment
755(1)
27.3 NEPA: A Model for Assessing Impacts and Developing Mitigation Measures
756(2)
27.4 Framing Mitigation Best Practices
758(11)
27.4.1 Project Conception
759(1)
27.4.2 Impact Assessment
760(1)
27.4.2.1 The Environmental Assessment (EA)
760(1)
27.4.2.2 The Environmental Impact Statement (EIS)
761(2)
27.4.2.3 SEPA Impact Assessment Examples
763(1)
27.4.3 Alternatives Analysis
763(1)
27.4.4 Public Involvement and Review
764(5)
27.5 Enforcement and Post-Project Monitoring
769(3)
27.6 Transportation Planning and Regional Mitigation Approaches
772(2)
References
774(1)
Index 775
Rajib Mallick, PE, has extensive experience with asphalt materials, mixture design, construction, pavement design, recycling, and nondestructive testing. From 1992 to 1998, he worked as a research assistant and as a senior research associate at the National Center for Asphalt Technology (NCAT) and is currently a Visiting Professor of Civil and Environmental Engineering (CEE) at the University of Texas at El Paso. He has completed numerous research projects for several departments of transportation, the Federal Highway Administration (FHWA), the Massachusetts Port Authority (Massport), the National Science Foundation (NSF), the Federal Aviation Administration (FAA), and several private practitioner organizations. Dr. Mallick has coauthored more than 100 papers for journals and conference proceedings, as well as several practical reports, manuals, and state-of-the-practice reports for federal, state, and local highway agencies.

Dr. Tahar El-Korchi is a professor and head of civil and environmental engineering at Worcester Polytechnic Institute. He does research and teaches courses on pavement analysis, design and management, construction materials testing and evaluation, cement and concrete materials and construction processes, structural analysis and design, and high-performance structural materials at the undergraduate and graduate level. He has published more than 80 publications and presentations and has served at numerous WPI global project centers, including Puerto Rico; Washington, District of Columbia; Morocco; Costa Rica; and Panama. Dr. El-Korchi was granted the prestigious Presidential Young Investigator Award by the National Science Foundation in 1991. Dr. El-Korchi is also a consultant to several major corporations. He provides recommendations for the design and evaluation of pavements, materials, and structures.