Preface |
|
xiii | |
Acknowledgement |
|
xv | |
|
|
1 | (24) |
|
|
1 | (8) |
|
1.2 A Glance at Evaluation Planning |
|
|
9 | (16) |
|
PART I Fundamental Concepts |
|
|
|
Chapter 2 Introduction to Probability |
|
|
25 | (30) |
|
2.1 Sets and Algebra of Sets |
|
|
25 | (4) |
|
|
29 | (5) |
|
2.3 Conditional Probability |
|
|
34 | (5) |
|
|
39 | (1) |
|
2.5 Bayes' Rule and the Law of Total Probability |
|
|
40 | (5) |
|
|
45 | (10) |
|
|
45 | (2) |
|
2.6.2 K out of N Permutation with Replacement |
|
|
47 | (1) |
|
2.6.3 K out of N Permutation without Replacement |
|
|
48 | (1) |
|
2.6.4 K out of N Combination without Replacement |
|
|
48 | (1) |
|
2.6.5 K out of N Combination with Replacement |
|
|
49 | (6) |
|
Chapter 3 Exploratory Data Analysis |
|
|
55 | (24) |
|
|
55 | (7) |
|
3.2 Statistics of Central Tendency |
|
|
62 | (4) |
|
3.3 Measures of Dispersion |
|
|
66 | (2) |
|
3.4 Statistics of Shape (Asymmetry and Kurtosis) |
|
|
68 | (2) |
|
|
70 | (9) |
|
Chapter 4 Introduction to Random Variables |
|
|
79 | (60) |
|
4.1 Discrete Random Variables |
|
|
79 | (11) |
|
4.2 Continuous Random Variables |
|
|
90 | (8) |
|
|
98 | (12) |
|
|
110 | (21) |
|
4.4.1 Joint Discrete Random Variables |
|
|
111 | (4) |
|
4.4.2 Joint Continuous Random Variables |
|
|
115 | (5) |
|
|
120 | (4) |
|
4.4.4 Expect, and Var. of Prod, of Rand. Variab |
|
|
124 | (4) |
|
4.4.5 Expect, and Var. of Sums of Rand. Variab |
|
|
128 | (3) |
|
4.5 Summary of Properties of Expectation and Variance |
|
|
131 | (1) |
|
4.6 Covariance, Correlation, and Independence |
|
|
132 | (7) |
|
Chapter 5 Some Important Random Variables |
|
|
139 | (80) |
|
5.1 Some Discrete Random Variables |
|
|
139 | (17) |
|
|
139 | (2) |
|
|
141 | (3) |
|
|
144 | (3) |
|
|
147 | (3) |
|
|
150 | (2) |
|
|
152 | (4) |
|
5.2 Some Continuous Random Variables |
|
|
156 | (46) |
|
|
156 | (2) |
|
|
158 | (2) |
|
|
160 | (5) |
|
|
165 | (3) |
|
|
168 | (3) |
|
|
171 | (3) |
|
|
174 | (4) |
|
|
178 | (3) |
|
|
181 | (1) |
|
|
181 | (4) |
|
|
185 | (5) |
|
|
190 | (3) |
|
|
193 | (4) |
|
|
197 | (5) |
|
5.3 Functions of a Random Variable |
|
|
202 | (5) |
|
|
207 | (12) |
|
Chapter 6 Statistical Inference and Data Fitting |
|
|
219 | (76) |
|
6.1 Parametric Confidence Interval for Mean |
|
|
219 | (9) |
|
6.1.1 Confidence Interval when Variance is Known |
|
|
221 | (4) |
|
6.1.2 Confidence Interval when Variance is Unknown |
|
|
225 | (3) |
|
6.2 Parametric Confidence Interval for SD2 and SD |
|
|
228 | (3) |
|
6.3 Parametric Confidence Interval for Proportion |
|
|
231 | (6) |
|
6.3.1 Parametric Confid. Interv. for p based on b(n, k) |
|
|
231 | (4) |
|
6.3.2 Parametric Confid. Interv. for p based on N(μ, σ) |
|
|
235 | (2) |
|
6.4 Parametric Confidence Interval for Difference |
|
|
237 | (9) |
|
6.4.1 Confidence Interval for Paired Comparison |
|
|
237 | (4) |
|
6.4.2 Conf. Interv. for Non-Corresp. Measurements |
|
|
241 | (5) |
|
|
246 | (9) |
|
|
246 | (3) |
|
|
249 | (3) |
|
6.5.3 Semi-Parametric Bootstrap |
|
|
252 | (3) |
|
|
255 | (13) |
|
6.6.1 Probability-Probability Plot Method |
|
|
255 | (3) |
|
|
258 | (4) |
|
6.6.3 Kolmogorov-Smirnov Method |
|
|
262 | (6) |
|
|
268 | (27) |
|
|
268 | (8) |
|
6.7.2 Polynomial Regression |
|
|
276 | (3) |
|
6.7.3 Exponential Regression |
|
|
279 | (3) |
|
6.7.4 Lagrange's Polynomial |
|
|
282 | (13) |
|
Chapter 7 Data Scaling, Distances, and Clustering |
|
|
295 | (70) |
|
|
295 | (18) |
|
7.2 Distance and Similarity Measures |
|
|
313 | (5) |
|
|
318 | (5) |
|
7.4 Clustering: an introduction |
|
|
323 | (7) |
|
|
330 | (7) |
|
7.6 K-Medoid and K-Median |
|
|
337 | (4) |
|
7.7 Hierarchical Clustering |
|
|
341 | (24) |
|
PART II Performance Modeling |
|
|
|
Chapter 8 Operational Analysis |
|
|
365 | (28) |
|
|
367 | (1) |
|
|
368 | (1) |
|
|
369 | (3) |
|
|
372 | (4) |
|
8.5 General Response Time Law |
|
|
376 | (2) |
|
8.6 Interactive Response Time Law |
|
|
378 | (4) |
|
8.7 Bottleneck Analysis and Bounds |
|
|
382 | (11) |
|
Chapter 9 Discrete Time Markov Chain |
|
|
393 | (46) |
|
|
393 | (5) |
|
9.2 Chapman-Kolmogorov Equation |
|
|
398 | (6) |
|
9.3 Transient Distribution |
|
|
404 | (3) |
|
9.4 Steady State Distribution |
|
|
407 | (1) |
|
9.5 Classification of States, MRT and MFPT |
|
|
408 | (13) |
|
9.6 Holding Time (Sojourn Time or Residence Time) |
|
|
421 | (2) |
|
9.7 Mean Time to Absorption |
|
|
423 | (2) |
|
|
425 | (14) |
|
Chapter 10 Continuous Time Markov Chain |
|
|
439 | (86) |
|
|
439 | (3) |
|
10.2 Chapman-Kolmogorov Equation |
|
|
442 | (6) |
|
|
448 | (2) |
|
|
450 | (13) |
|
|
452 | (6) |
|
10.4.2 Gauss-Seidel Method |
|
|
458 | (5) |
|
|
463 | (17) |
|
10.5.1 Interval Subdivision |
|
|
464 | (1) |
|
10.5.2 First Order Differential Linear Equation |
|
|
464 | (5) |
|
10.5.3 Solution through Laplace Transform |
|
|
469 | (3) |
|
10.5.4 Uniformization Method |
|
|
472 | (8) |
|
|
480 | (8) |
|
10.6.1 Method Based on Moments |
|
|
485 | (3) |
|
|
488 | (3) |
|
10.8 Additional Modeling Examples |
|
|
491 | (34) |
|
10.8.1 Online Processing Request Control |
|
|
492 | (1) |
|
10.8.2 Tiny Private Cloud System |
|
|
493 | (2) |
|
10.8.3 Two Servers with Different Processing Rates |
|
|
495 | (5) |
|
10.8.4 M/E/1/4 Queue System |
|
|
500 | (3) |
|
10.8.5 Mobile Application Offloading |
|
|
503 | (3) |
|
10.8.6 Queue System with MMPP Arrival |
|
|
506 | (3) |
|
10.8.7 Poisson Process and Two Queues |
|
|
509 | (3) |
|
10.8.8 Two Stage Tandem System |
|
|
512 | (3) |
|
10.8.9 Event Recommendation Mashup |
|
|
515 | (10) |
|
Chapter 11 Basic Queueing Models |
|
|
525 | (38) |
|
11.1 The Birth and Death Process |
|
|
525 | (2) |
|
|
527 | (9) |
|
|
536 | (9) |
|
|
545 | (4) |
|
|
549 | (5) |
|
|
554 | (5) |
|
|
559 | (4) |
|
|
563 | (56) |
|
|
563 | (1) |
|
|
564 | (9) |
|
|
573 | (2) |
|
12.4 Conflict, Concurrency, and Confusion |
|
|
575 | (6) |
|
12.5 Petri Nets Subclasses |
|
|
581 | (3) |
|
12.6 Modeling Classical Problems |
|
|
584 | (11) |
|
12.7 Behavioral Properties |
|
|
595 | (5) |
|
|
596 | (1) |
|
|
597 | (1) |
|
|
597 | (1) |
|
|
598 | (1) |
|
|
598 | (1) |
|
|
599 | (1) |
|
|
600 | (1) |
|
12.8 Behavioral Property Analysis |
|
|
600 | (8) |
|
|
600 | (1) |
|
|
601 | (5) |
|
|
606 | (2) |
|
12.9 Structural Properties and Analysis |
|
|
608 | (11) |
|
12.9.1 Transition Invariants |
|
|
609 | (2) |
|
|
611 | (8) |
|
Chapter 13 Stochastic Petri Nets |
|
|
619 | (86) |
|
13.1 Definition and Basic Concepts |
|
|
619 | (15) |
|
13.1.1 A Comment about the Model Presented |
|
|
633 | (1) |
|
|
634 | (8) |
|
13.3 Performance Modeling with SPN |
|
|
642 | (63) |
|
13.3.1 M/M/1/k Queue System |
|
|
643 | (4) |
|
|
647 | (1) |
|
13.3.3 M/M/m/k Queue System |
|
|
648 | (6) |
|
13.3.4 Queue System with Distinct Classes of Stations |
|
|
654 | (5) |
|
13.3.5 Queue System with Breakdown |
|
|
659 | (1) |
|
13.3.6 Queue System with Priority |
|
|
660 | (2) |
|
13.3.7 Open Tandem Queue System with Blocking |
|
|
662 | (5) |
|
13.3.8 Modeling Phase-Type Distributions |
|
|
667 | (23) |
|
13.3.9 Memory Policies and Phase-Type Distributions |
|
|
690 | (5) |
|
13.3.10 Probability Distribution of SPNs |
|
|
695 | (10) |
|
Chapter 14 Stochastic Simulation |
|
|
705 | (1) |
|
|
705 | (1) |
|
14.1.1 Monte Carlo Simulation |
|
|
706 | (7) |
|
14.2 Discrete Event Simulation: an Overview |
|
|
713 | (9) |
|
14.3 Random Variate Generation |
|
|
722 | (1) |
|
14.3.1 Pseudo-Random Number Generation |
|
|
722 | (4) |
|
14.3.2 Inverse Transform Method |
|
|
726 | (9) |
|
14.3.3 Convolution Method |
|
|
735 | (3) |
|
14.3.4 Composition Method |
|
|
738 | (1) |
|
14.3.5 Acceptance-Rejection Method |
|
|
739 | (3) |
|
|
742 | (3) |
|
|
745 | (32) |
|
14.4.1 Transient Simulation |
|
|
747 | (19) |
|
14.4.2 Steady-State Simulation |
|
|
766 | (11) |
|
14.5 Additional Modeling Examples |
|
|
777 | (1) |
|
14.5.1 G/G/m Queue System |
|
|
777 | (3) |
|
14.5.2 G/G/m Queue System with Breakdown |
|
|
780 | (2) |
|
14.5.3 Planning Mobile Cloud Infrastructures |
|
|
782 | (5) |
Bibliography |
|
787 | |
Preface |
|
xiii | |
Acknowledgement |
|
xv | |
|
|
1 | (14) |
|
PART III Reliability and Availability Modeling |
|
|
|
Chapter 16 Fundamentals of Dependability |
|
|
15 | (28) |
|
|
15 | (2) |
|
16.2 Fundamental Concepts |
|
|
17 | (13) |
|
16.3 Some Important Probability Distributions |
|
|
30 | (13) |
|
|
43 | (20) |
|
|
44 | (15) |
|
|
59 | (4) |
|
Chapter 18 Reliability Block Diagram |
|
|
63 | (76) |
|
18.1 Models Classification |
|
|
63 | (1) |
|
|
63 | (2) |
|
18.3 Logical and Structure Functions |
|
|
65 | (5) |
|
|
70 | (1) |
|
|
70 | (33) |
|
18.6 System Redundancy and Component Redundancy |
|
|
103 | (3) |
|
18.7 Common Cause Failure |
|
|
106 | (1) |
|
|
107 | (1) |
|
|
108 | (31) |
|
|
139 | (32) |
|
19.1 Components of a Fault Tree |
|
|
139 | (5) |
|
|
144 | (10) |
|
|
154 | (13) |
|
19.4 Common Cause Failure |
|
|
167 | (4) |
|
Chapter 20 Combinatorial Model Analysis |
|
|
171 | (42) |
|
20.1 Structure Function Method |
|
|
171 | (1) |
|
|
172 | (8) |
|
|
180 | (4) |
|
|
184 | (5) |
|
20.5 Inclusion-Exclusion Method |
|
|
189 | (6) |
|
20.6 Sum of Disjoint Products Method |
|
|
195 | (5) |
|
20.7 Methods for Estimating Bounds |
|
|
200 | (13) |
|
20.7.1 Method Based on Inclusion and Exclusion |
|
|
200 | (3) |
|
20.7.2 Method Based on the Sum of Disjoint Products |
|
|
203 | (2) |
|
20.7.3 Min-Max Bound Method |
|
|
205 | (1) |
|
20.7.4 Esary-Proschan Method |
|
|
206 | (1) |
|
|
207 | (6) |
|
Chapter 21 Modeling Availability, Reliability, and Capacity with CTMC |
|
|
213 | (62) |
|
|
213 | (3) |
|
21.2 Hot-Standby Redundancy |
|
|
216 | (7) |
|
21.3 Hot-Standby with Non-Zero Delay Switching |
|
|
223 | (4) |
|
|
227 | (6) |
|
21.5 Cold-Standby Redundancy |
|
|
233 | (4) |
|
21.6 Warm-Standby Redundancy |
|
|
237 | (6) |
|
21.7 Active-Active Redundancy |
|
|
243 | (10) |
|
21.8 Many Similar Machines with Repair Facilities |
|
|
253 | (7) |
|
21.9 Many Similar Machines with Shared Repair Facility |
|
|
260 | (2) |
|
21.10 Phase-Type Distribution and Preventive Maintenance |
|
|
262 | (3) |
|
21.11 Two-States Availability Equivalent Model |
|
|
265 | (3) |
|
21.12 Common Cause Failure |
|
|
268 | (7) |
|
Chapter 22 Modeling Availability, Reliability, and Capacity with SPN |
|
|
275 | (72) |
|
|
275 | (2) |
|
22.2 Modeling TTF and TTR with Phase-Type Distribution |
|
|
277 | (4) |
|
22.3 Hot-Standby Redundancy |
|
|
281 | (3) |
|
|
284 | (5) |
|
22.5 Cold-Standby Redundancy |
|
|
289 | (3) |
|
22.6 Warm-Standby Redundancy |
|
|
292 | (3) |
|
22.7 Active-Active Redundancy |
|
|
295 | (2) |
|
|
297 | (8) |
|
22.8.1 Modeling Multiple Resources on Multiple Servers |
|
|
299 | (6) |
|
22.9 Corrective Maintenance |
|
|
305 | (5) |
|
22.10 Preventive Maintenance |
|
|
310 | (7) |
|
22.11 Common Cause Failure |
|
|
317 | (1) |
|
22.12 Some Additional Models |
|
|
318 | (29) |
|
22.12.1 Data Center Disaster Recovery |
|
|
318 | (7) |
|
22.12.2 Disaster Tolerant Cloud Systems |
|
|
325 | (8) |
|
22.12.3 MHealth System Infrastructure |
|
|
333 | (14) |
|
PART IV Measuring and Data Analysis |
|
|
|
Chapter 23 Performance Measuring |
|
|
347 | (98) |
|
|
347 | (4) |
|
23.2 Measurement Strategies |
|
|
351 | (1) |
|
23.3 Basic Performance Metrics |
|
|
352 | (1) |
|
|
353 | (6) |
|
23.5 Measuring Short Time Intervals |
|
|
359 | (5) |
|
|
364 | (12) |
|
23.6.1 Deterministic Profiling |
|
|
364 | (5) |
|
23.6.2 Statistical Profiling |
|
|
369 | (7) |
|
23.7 Counters and Basic Performance Tools in Linux |
|
|
376 | (55) |
|
23.7.1 System Information |
|
|
377 | (36) |
|
23.7.2 Process Information |
|
|
413 | (18) |
|
|
431 | (14) |
|
Chapter 24 Workload Characterization |
|
|
445 | (82) |
|
|
446 | (5) |
|
|
451 | (26) |
|
|
451 | (17) |
|
24.2.2 Synthetic Operational Workload Generation |
|
|
468 | (9) |
|
|
477 | (50) |
|
24.3.1 Modeling Workload Impact |
|
|
478 | (15) |
|
24.3.2 Modeling Intended Workload |
|
|
493 | (34) |
|
Chapter 25 Lifetime Data Analysis |
|
|
527 | (86) |
|
|
527 | (7) |
|
25.1.1 Reliability Data Sources |
|
|
528 | (4) |
|
|
532 | (2) |
|
25.2 Non-Parametric Methods |
|
|
534 | (23) |
|
25.2.1 Ungrouped Complete Data Method |
|
|
535 | (4) |
|
25.2.2 Grouped Complete Data Method |
|
|
539 | (3) |
|
25.2.3 Ungrouped Multiply Censored Data Method |
|
|
542 | (3) |
|
25.2.4 Kaplan-Meier Method |
|
|
545 | (12) |
|
|
557 | (56) |
|
|
558 | (11) |
|
|
569 | (8) |
|
25.3.3 Maximum Likelihood Estimation |
|
|
577 | (18) |
|
25.3.4 Confidence Intervals |
|
|
595 | (18) |
|
Chapter 26 Fault Injection and Failure Monitoring |
|
|
613 | (28) |
|
|
614 | (11) |
|
26.2 Some Notable Fault Injection Tools |
|
|
625 | (7) |
|
26.3 Software-Based Fault Injection |
|
|
632 | (9) |
Bibliography |
|
641 | (40) |
Appendix A MTTF 2oo5 |
|
681 | (2) |
Appendix B Whetsone |
|
683 | (10) |
Appendix C Linpack-Bench |
|
693 | (24) |
Appendix D Livermore Loops |
|
717 | (12) |
Appendix E MMP - CTMC Trace Generator |
|
729 | |