Atjaunināt sīkdatņu piekrišanu

E-grāmata: Perspectives in Shape Analysis

Edited by , Edited by , Edited by , Edited by
  • Formāts: PDF+DRM
  • Sērija : Mathematics and Visualization
  • Izdošanas datums: 30-Sep-2016
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319247267
  • Formāts - PDF+DRM
  • Cena: 154,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Mathematics and Visualization
  • Izdošanas datums: 30-Sep-2016
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319247267

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book presents recent advances in the field of shape analysis. Written by experts in the fields of continuous-scale shape analysis, discrete shape analysis and sparsity, and numerical computing who hail from different communities, it provides a unique view of the topic from a broad range of perspectives.Over the last decade, it has become increasingly affordable to digitize shape information at high resolution. Yet analyzing and processing this data remains challenging because of the large amount of data involved, and because modern applications such as human-computer interaction require real-time processing. Meeting these challenges requires interdisciplinary approaches that combine concepts from a variety of research areas, including numerical computing, differential geometry, deformable shape modeling, sparse data representation, and machine learning. On the algorithmic side, many shape analysis tasks are modeled using partial differential equations, which can be solved u

sing tools from the field of numerical computing. The fields of differential geometry and deformable shape modeling have recently begun to influence shape analysis methods. Furthermore, tools from the field of sparse representations, which aim to describe input data using a compressible representation with respect to a set of carefully selected basic elements, have the potential to significantly reduce the amount of data that needs to be processed in shape analysis tasks. The related field of machine learning offers similar potential.The goal of the Dagstuhl Seminar on New Perspectives in Shape Analysis held in February 2014 was to address these challenges with the help of the latest tools related to geometric, algorithmic and numerical concepts and to bring together researchers at the forefront of shape analysis who can work together to identify open problems and novel solutions. The book resulting from this seminar will appeal to researchers in the field of shape analysis, ima

ge and vision, from those who want to become more familiar with the field, to experts interested in learning about the latest advances.

Part I Numerical Computing for Shape Analysis: 1 Ornament Analysis with the Help of Screened Poisson Shape Fields: S. Tari.- 2 A Comparison of Non-Lambertian Models for the Shape-from-Shading Problem: S. Tozza and M. Falcone.- 3 Direct Variational Perspective Shape from Shading with Cartesian Depth Parameterisation Y. Chul Ju et al.- 4 Amoeba Techniques for Shape and Texture Analysis: M. Welk.- 5 Increasing the Power of Shape Descriptor Based Object Analysis Techniques: J. Zunķc et al.- 6 Shape Distances for Binary Image Segmentation F.R. Schmidt et al.- 7 Segmentation in Point Clouds from RGB-D using Spectral Graph Reduction: M. Keuper and Th. Brox.- Part II Sparse Data Representation and Machine Learning for Shape Analysis: 8 Shape Compaction: H. Li and H. Zhang.- 9 Homological Shape Analysis through Discrete Morse Theory: L. de Floriani et al.- 10 Sparse Modeling of Intrinsic Correspondences: J. Pokrass et al.- 11 Applying Random Forests to the Problem of Dense Non-Rigid Shape

Correspondence: M. Vestner et al.- 12 Accelerating Deformable Part Models with Branch-and-Bound: I. Kokkinos.- Part III Deformable Shape Modeling: 13 Non-Rigid Shape Correspondence in the Spectral Domain: A. Dubrovina.- 14 The Perspective Face Shape Ambiguity: W.A.P. Smith.- 15 On Shape Recognition and Language: P. Maragos.- 16 Tongue Mesh Extraction from 3D MRI Data of the Human Vocal Tract: A. Hewer et al.
Part I Numerical Computing for Shape Analysis
1 Ornament Analysis with the Help of Screened Poisson Shape Fields
3(12)
Sibel Tari
2 A Comparison of Non-Lambertian Models for the Shape-from-Shading Problem
15(28)
Silvia Tozza
Maurizio Falcone
3 Direct Variational Perspective Shape from Shading with Cartesian Depth Parametrisation
43(30)
Yong Chul Ju
Daniel Maurer
Michael Breuß
Andres Bruhn
4 Amoeba Techniques for Shape and Texture Analysis
73(44)
Martin Welk
5 Increasing the Power of Shape Descriptor Based Object Analysis Techniques
117(20)
Jovisa Zunic
Paul L. Rosin
Mehmet Ali Aktas
6 Shape Distances for Binary Image Segmentation
137(18)
Frank R. Schmidt
Lena Gorelick
Ismail Ben Ayed
Yuri Boykov
Thomas Brox
7 Segmentation in Point Clouds from RGB-D Using Spectral Graph Reduction
155(16)
Margret Keuper
Thomas Brox
Part II Sparse Data Representation and Machine Learning for Shape Analysis
8 Shape Compaction
171(16)
Honghua Li
Hao Zhang
9 Homological Shape Analysis Through Discrete Morse Theory
187(24)
Leila De Floriani
Ulderico Fugacci
Federico Iuricich
10 Sparse Models for Intrinsic Shape Correspondence
211(20)
Jonathan Pokrass
Alexander M. Bronstein
Michael M. Bronstein
Pablo Sprechmann
Guillermo Sapiro
11 Applying Random Forests to the Problem of Dense Non-rigid Shape Correspondence
231(18)
Matthias Vestner
Emanuele Rodola
Thomas Windheuser
Samuel Rota Bulo
Daniel Cremers
12 Accelerating Deformable Part Models with Branch-and-Bound
249(26)
Iasonas Kokkinos
Part III Deformable Shape Modeling
13 Non-rigid Shape Correspondence Using Surface Descriptors and Metric Structures in the Spectral Domain
275(24)
Anastasia Dubrovina
Yonathan Aflalo
Ron Kimmel
14 The Perspective Face Shape Ambiguity
299(22)
William A.P. Smith
15 On Shape Recognition and Language
321(24)
Petros Maragos
Vassilis Pitsikalis
Athanasios Katsamanis
George Pavlakos
Stavros Theodorakis
16 Tongue Mesh Extraction from 3D MRI Data of the Human Vocal Tract
345(22)
Alexander Hewer
Stefanie Wuhrer
Ingmar Steiner
Korin Richmond
Index 367