Atjaunināt sīkdatņu piekrišanu

E-grāmata: Pharmaceutical Analysis for Small Molecules

Edited by
  • Formāts: PDF+DRM
  • Izdošanas datums: 12-Jul-2017
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119425038
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 123,67 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: PDF+DRM
  • Izdošanas datums: 12-Jul-2017
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119425038
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

A comprehensive introduction for scientists engaged in new drug development, analysis, and approvals 

Each year the pharmaceutical industry worldwide recruits thousands of recent science graduatesespecially chemistry, analytical chemistry, pharmacy, and pharmaceutical majorsinto its ranks. However, because of their limited background in pharmaceutical analysis most of those new recruits find making the transition from academia to industry very difficult. Designed to assist both recent graduates, as well as experienced chemists or scientists with limited regulatory, compendial or pharmaceutical analysis background, make that transition, Pharmaceutical Analysis for Small Molecules is a concise, yet comprehensive introduction to the drug development process and analysis of chemically synthesized, small molecule drugs. It features contributions by distinguished experts in the field, including editor and author, Dr. Behnam Davani, an analytical chemist with decades of technical management and teaching experience in compendial, regulatory, and industry.

This book provides an introduction to pharmaceutical analysis for small molecules (non-biologics) using commonly used techniques for drug characterization and performance tests. The driving force for industry to perform pharmaceutical analyses is submission of such data and supporting documents to regulatory bodies for drug approval in order to market their products. In addition, related required supporting studies including good laboratory/documentation practices including analytical instrument qualification are highlighted in this book.

Topics covered include:





Drug Approval Process and Regulatory Requirements (private standards) Pharmacopeias and Compendial Approval Process (public standards) Common methods in pharmaceutical analysis (typically compendial) Common Calculations for assays and impurities and other specific tests Analytical Method Validation, Verification, Transfer Specifications including how to handle out of specification (OOS) and out of trend (OOT) Impurities including organic, inorganic, residual solvents and elemental impurities Good Documentation Practices for regulatory environment Management of Analytical Laboratories Analytical Instrument Qualifications including IQ, OQ, PQ and VQ

Due to global nature of pharmaceutical industry, other topics on both regulatory (ICH) and Compendial harmonization are also highlighted.

Pharmaceutical Analysis for Small Molecules is a valuable working resource for scientists directly or indirectly involved with the drug development process, including analytical chemists, pharmaceutical scientists, pharmacists, and quality control/quality assurance professionals. It also is an excellent text/reference for graduate students in analytical chemistry, pharmacy, pharmaceutical and regulatory sciences.
About the Editor xvi
List of Contributors xviii
Preface xxi
Acknowledgment xxv
1 Drug Approval Process and Regulatory Requirements 1(13)
1.1 Introduction
1(1)
1.2 The Regulatory Process for New Drug Entity
2(3)
1.2.1 Preclinical Studies
2(1)
1.2.2 Investigational New Drug Application (INDA)
2(1)
1.2.2.1 Phase 1 Clinical
2(1)
1.2.2.2 Phase 2 Clinical
3(1)
1.2.2.3 Phase 3 Clinical
3(1)
1.2.3 New Drug Application (NDA)
3(4)
1.2.3.1 NDA Review by FDA
3(1)
1.2.3.2 NDA Review Process
4(1)
1.3 Good Laboratory Practice for Nonclinical Laboratory Studies
5(1)
1.4 Validation of Analytical Procedures: Methodology
6(1)
1.5 FDA Role in the Discovery and Development of New Drug Entities
7(2)
1.5.1 INDA Analytical Requirements
7(1)
1.5.2 NDA Analytical Requirements
8(1)
1.5.3 Biotechnology-Derived Products - Small Molecules
8(1)
1.6 FDA Inspectors' Role in Analytics Relative to Products in the Marketplace
9(3)
1.6.1 FDA Compliance Program Guidance Manual (Implemented on 09/11/2015 with a Completion Date of 09/11/2016 - Program 7356.002)
9(1)
1.6.2 Guide for Inspection of Microbiological Pharmaceutical Quality Control Laboratories
10(1)
1.6.3 Biotechnology Inspection Guide
11(1)
1.7 Conclusions
12(1)
References
12(2)
2 Pharmacopeias and Compendia! Approval Process 14(23)
2.1 Introduction
14(1)
2.2 USP History
14(1)
2.3 Evolution of the Mission of the USP
15(1)
2.4 The USP Organization
16(1)
2.4.1 The USP Convention
16(1)
2.4.2 The Board of Trustees
16(1)
2.4.3 The Council of Experts
16(1)
2.4.4 Expert Panels to the Council of Experts
16(1)
2.4.5 Stakeholder Forums and Project Teams
17(1)
2.4.6 USP Staff
17(1)
2.5 The USP-NF Revision Process
17(1)
2.6 Publications of USP
18(1)
2.6.1 USP-NF
18(1)
2.6.2 Pharmacopeial Forum
18(1)
2.6.3 Supplements
18(1)
2.6.4 USP Spanish Edition
18(1)
2.6.5 USP Reference Standards
18(1)
2.6.6 Chromatographic Columns
18(1)
2.6.7 USP Dictionary
18(1)
2.6.8 USP Dietary Supplements Compendium
19(1)
2.6.9 Food Chemical Codex
19(1)
2.6.10 USP Medicines Compendium
19(1)
2.7 Relationship between USP and FDA
19(1)
2.8 USP and the Pharmacopoeias of Europe and Japan
20(1)
2.8.1 The European Pharmacopoeia
20(1)
2.8.2 The Pharmacopeia of Japan
21(1)
2.9 Harmonization of Pharmacopeial Monographs and General
Chapters
21(11)
2.9.1 PDG Working Procedures
22(3)
2.9.2 Status of the Pharmacopeial Harmonization Initiative
25(3)
2.9.3 Roles and Responsibilities of Major Stakeholders in Pharmacopeial Harmonization
28(1)
2.9.4 The Roles and Responsibilities of Industry in Pharmacopeial Harmonization
29(1)
2.9.5 The Roles and Responsibilities of the Regulatory Agencies in Pharmacopeial Harmonization
30(1)
2.9.6 The Roles and Responsibilities of the International Conference on Harmonization (ICH) in Pharmacopeial Harmonization
30(1)
2.9.7 Advantages of Pharmacopeial Harmonization
31(1)
2.9.8 Disadvantages of Pharmacopeial Harmonization
31(1)
2.10 Comparisons between the PDG Process and the ICH Process in Harmonization
32(1)
2.11 The Special Case of Pharmacopeial Harmonization of Excipients
33(1)
2.12 Retrospective versus Forward Pharmacopeial Harmonization
33(1)
2.13 Conclusions and Recommendations
34(1)
2.14 Final Thoughts
35(1)
List of Abbreviations
35(1)
References
36(1)
3 Common Methods in Pharmaceutical Analysis 37(21)
3.1 Scope
37(1)
3.2 Analytical Methods
37(3)
3.2.1 Separation Methods
37(3)
3.2.1.1 High-Performance Liquid Chromatography
37(2)
3.2.1.2 Gas Chromatography
39(1)
3.2.1.3 Thin-Layer Chromatography
39(1)
3.2.1.4 Supercritical Fluid Chromatography
39(1)
3.2.1.5 Capillary Electrophoresis
40(1)
3.3 Spectroscopy Methods
40(1)
3.3.1 Ultraviolet
40(1)
3.3.2 Infrared
40(1)
3.3.3 Raman Spectroscopy
40(1)
3.3.4 Nuclear Magnetic Resonance
41(1)
3.3.5 Mass Spectrometry
41(1)
3.4 Other Spectroscopy Methods
41(1)
3.4.1 Atomic Absorption Spectroscopy and Inductively Coupled Plasma Spectroscopy
41(1)
3.5 Wet Chemistry Methods
42(1)
3.5.1 Titration
42(1)
3.5.2 Loss on Drying (LOD)
42(1)
3.5.3 Loss on Ignition (LOI)
43(1)
3.5.4 Residue on Ignition (ROI) or Sulfated Ash
43(1)
3.5.5 Water Determination
43(1)
3.6 Performance Methods (Contributed by Oscar Liu)
43(4)
3.6.1 Disintegration
43(1)
3.6.2 Dissolution
44(1)
3.6.3 Uniformity of Dosage Units
45(1)
3.6.4 Aerodynamic Particle Size Distribution Analysis
46(1)
3.7 Microbiological Methods (Contributed by Roger Dabbah)
47(4)
3.7.1 Introduction
47(1)
3.7.2 Microbial Limit Tests
48(1)
3.7.2.1 Microbial Limit Tests - Enumeration via a Plate Count
48(1)
3.7.2.2 Membrane Filtration Method
49(1)
3.7.2.3 Most Probable Number (MPN) Procedure
49(1)
3.7.3 Tests for Specified Microorganisms
49(1)
3.7.4 Sterility Test
50(1)
3.8 Critical Factors Involved in Microbial Limit Tests and in Sterility Tests
51(1)
3.9 Harmonization of Pharmacopeial Procedures and Requirement
52(1)
3.10 Bacterial Endotoxins Test
52(1)
3.11 Summary
53(1)
References
54(4)
4 Common Calculations 58(11)
4.1 Scope
58(1)
4.2 Calculations (Quantitative Analysis)
58(6)
4.2.1 Percent Loss on Drying (LOD)
58(1)
4.2.2 Percent Loss on Ignition (LOI)
59(1)
4.2.3 Percent Residue on Ignition (ROI)
59(1)
4.2.4 Assay
59(4)
4.2.4.1 Chromatography (HPLC, GC)
59(2)
4.2.4.2 Spectroscopy (UV, IR, etc.)
61(1)
4.2.4.3 Titration
62(1)
4.2.4.3.1 Direct
62(1)
4.2.4.3.2 Residual or Back Titration
62(1)
4.2.5 Organic Impurities
63(1)
4.2.5.1 Chromatography (HPLC, GC)
63(1)
4.3 Calculations (System Suitability Parameters)
64(3)
4.3.1 Resolution (R)
64(1)
4.3.2 Tailing Factor (T) or Asymmetry Factor (As)
65(1)
4.3.3 Number of Theoretical Plates (N)
66(1)
4.3.4 Capacity Factor (k') or Retention Factor (k)
67(1)
4.4 Summary
67(1)
References
67(2)
5 Analytical Method Validation, Verification, and Transfer 69(15)
5.1 Introduction
69(1)
5.2 Scope
69(1)
5.3 Typical Validation Characteristics
70(1)
5.4 Definition and Determination of Analytical Characteristics
70(6)
5.4.1 Accuracy
70(1)
5.4.2 Precision
71(1)
5.4.2.1 Repeatability
71(1)
5.4.2.2 Intermediate Precision (Ruggedness)
71(1)
5.4.2.3 Reproducibility
72(1)
5.4.3 Specificity
72(1)
5.4.4 Detection Limit (DL)
73(1)
5.4.5 Quantitation Limit (QL)
74(1)
5.4.6 Linearity
75(1)
5.4.7 Range
75(1)
5.5 Types of Analytical Procedures
76(1)
5.6 Typical Validation Requirement
76(1)
5.7 Revalidation
77(1)
5.8 System Suitability
77(1)
5.9 Forced Degradation (Stressed) Studies
78(1)
5.10 Analytical Method Verification
79(2)
5.11 Analytical Method Transfer
81(1)
5.11.1 Comparative Testing
81(1)
5.11.2 Co-Validation between Labs
81(1)
5.11.3 Revalidation
81(1)
5.11.4 Transfer Waiver
81(1)
5.12 Summary and Conclusion
82(1)
References
82(2)
6 Specifications 84(32)
6.1 Scope
84(1)
6.2 Introduction
84(2)
6.3 Types of Tests
86(1)
6.4 Types of Specifications
87(2)
6.5 Selection of Tests and Procedures
89(8)
6.5.1 Universal Tests
89(5)
6.5.1.1 Drug Substances
90(2)
6.5.1.2 New Drug Products
92(2)
6.5.2 Specific Tests
94(3)
6.5.2.1 Drug Substances
94(1)
6.5.2.2 Drug Products
95(2)
6.6 Establishing Acceptance Criteria
97(9)
6.6.1 Rounding Rules
97(1)
6.6.2 Statistical Estimation
98(4)
6.6.2.1 Confidence Interval
100(1)
6.6.2.2 Prediction Interval
100(1)
6.6.2.3 Tolerance Interval
101(1)
6.6.2.4 Monte Carlo Simulation of Quality Attributes
102(1)
6.6.3 Establishing Acceptance Criteria Limits
102(4)
6.6.3.1 Acceptance Criteria for Attributes that Do Not Change with Time
103(1)
6.6.3.2 Acceptance Criteria for Attributes that Change with Time-Trend Analysis
104(2)
6.7 Release Specifications
106(2)
6.7.1 Using the Process Capability Index to Estimate Attribute Acceptance Criteria
107(1)
6.8 Relationship between Release and Shelf-Life Specifications
108(2)
6.9 Using a Control Chart for Trend Analysis
110(1)
6.10 Life Cycle Management of Specifications
111(1)
6.10.1 Approach to Life Cycle Management
111(1)
6.10.2 Impact of the Investigation of Out-Of-Specification (OOS) and Out-Of-Trend (OOT) Results on Test Methods and Specifications
111(1)
6.11 Summary
112(1)
Acknowledgments
113(1)
References
113(3)
7 Impurities 116(11)
7.1 Scope
116(1)
7.2 Definitions
116(1)
7.3 Classification of Impurities
117(1)
7.4 Qualification of Impurities
118(3)
7.5 Other Specific Types of Impurities
121(2)
7.6 Non-Drug-Related Impurities
123(1)
7.7 Other Sources of Impurities
123(1)
7.8 Degradation/Stability Studies
124(1)
7.9 Summary
124(1)
References
124(3)
8 Good Documentation Practices 127(38)
8.1 Scope
127(1)
8.2 Definition, Purpose, and Importance
128(4)
8.2.1 Definition
128(3)
8.2.1.1 ISO Definition and Benefits
128(1)
8.2.1.2 Definition of Document
129(1)
8.2.1.3 Definition of Record
129(1)
8.2.1.4 Definition of Documentation
129(2)
8.2.2 Purpose of GDocP
131(1)
8.2.3 Importance of GDocP
131(1)
8.3 General Rules and Principles of GDocP
132(7)
8.3.1 Requirements of Records
132(2)
8.3.2 General Tips in GDocP
134(5)
8.3.2.1 Time Recording
135(1)
8.3.2.2 Date Recording
135(1)
8.3.2.3 Backdating
135(1)
8.3.2.4 Signature and Initial
135(1)
8.3.2.5 Rounding Rules for Numbers
136(1)
8.3.2.6 Corrections
136(1)
8.3.2.7 Missing Data
137(1)
8.3.2.8 Voiding Records
137(1)
8.3.2.9 Recreating and Rewriting of the Records
137(1)
8.3.2.10 Deviations
138(1)
8.4 General Tips for Laboratory Notebook Documentation
139(3)
8.4.1 Assignment
139(1)
8.4.2 Documentation
140(2)
8.4.3 Storage
142(1)
8.5 Electronic Documents and Electronic Signatures (21 CFR, Part 11)
142(6)
8.5.1 Definition of 21 CFR
142(1)
8.5.2 21 CFR - Subchapter A - General
143(5)
8.5.2.1 Part 11 - Electronic Records and Electronic Signatures
143(7)
8.5.2.1.1 Subpart A - General Provisions
143(2)
8.5.2.1.2 Subpart B - Electronic Records
145(2)
8.5.2.1.3 Subpart C - Electronic Signatures
147
8.6 US Pharmacopeia General
Chapter <1029> 148
8.6.1 Background
148(1)
8.6.2 Purpose
148(1)
8.6.3 Outline of the
Chapter
148(1)
8.7 Rules Governing Medicinal Products in the European Union (Vol. 4: Documentation)
149(9)
8.7.1 What is New in the Latest Version?
149(1)
8.7.2 Outline of EU GDocP Regulations
150(8)
8.7.2.1 Principle
150(1)
8.7.2.2 Required GMP Documentation (by Type)
150(1)
8.7.2.3 Generation and Control of Documentation
151(1)
8.7.2.4 Good Documentation Practices
152(1)
8.7.2.5 Retention of Documents
153(1)
8.7.2.6 Specifications
153(1)
8.7.2.7 Manufacturing Formula and Processing Instructions
154(3)
8.7.2.8 Procedures and Records
157(1)
8.8 GDocP Enforcement
158(3)
8.8.1 Regulatory Bodies in Charge
159(1)
8.8.2 FDA GDocP Compliance Observations
159(1)
8.8.3 FDA GDocP Fraud Observations
160(1)
8.8.4 Excerpts of 483 GDocP Observations
160(1)
8.9 Summary
161(1)
Abbreviations
161(1)
References
162(3)
9 The Management of Analytical Laboratories 165(11)
9.1 Introduction
165(1)
9.2 Principles of Management Applicable to the Laboratory Function
166(3)
9.2.1 System Thinking
166(1)
9.2.2 Organizational Structure
166(1)
9.2.3 Accountability and Responsibility
167(1)
9.2.4 Management of Personnel
167(1)
9.2.5 Allocation and Utilization of Resources
167(1)
9.2.6 Internal Interactions
168(1)
9.2.7 External Interactions
168(1)
9.2.8 Ethical Behavior
169(1)
9.3 Management of Analytical Scientists
169(5)
9.3.1 Technical Issues Impacting the Management of an Analytical Laboratory
169(1)
9.3.1.1 Selection of Analytical Methods
169(1)
9.3.1.2 All Selected Methods Should Be Validated for Their Intended Purposes
169(1)
9.3.1.3 The International Congress on Harmonization (ICH) Factor
170(1)
9.3.1.4 Management of Analytical Laboratory and cGMPs and GLPs
170(1)
9.3.1.5 Management under International Standardization Organization Certification
170(1)
9.3.2 Administrative Issues
170(2)
9.3.2.1 Performance Plans and Appraisals
170(1)
9.3.2.2 Training of Personnel and Promotional Opportunities
171(1)
9.3.2.3 Hiring and Firing of Personnel
171(1)
9.3.3 Managerial Issues in an Analytical Laboratory
172(8)
9.3.3.1 Planning
172(1)
9.3.3.2 Organizing
172(1)
9.3.3.3 Monitoring and Control
173(1)
9.3.3.4 Resolution of Conflicts
173(1)
9.4 Conclusions and Recommendations
174(1)
Abbreviations
174(1)
References
175(1)
10 Analytical Instrument Qualification 176(45)
10.1 Introduction
176(1)
10.2 Definitions
177(2)
10.3 Qualification: General Flow
179(1)
10.4 Qualification Strategy: V Model
179(1)
10.5 Qualification
180(3)
10.5.1 Qualification Scheme for New Equipment
180(3)
10.6 Qualification Phases
183(5)
10.6.1 User Requirement Specification
183(1)
10.6.2 Impact Assessment
183(1)
10.6.3 Design Qualification
184(1)
10.6.4 Factory Acceptance Test (FAT)
185(1)
10.6.5 Site Acceptance Test (SAT)
185(1)
10.6.6 Installation Qualification (IQ)
186(1)
10.6.7 Operational Qualification (OQ)
187(1)
10.6.8 Performance Qualification (PQ)
187(1)
10.6.9 Performance Verification (PV)
188(1)
10.6.10 Requalification
188(1)
10.7 Qualification Issues
188(1)
10.8 Combined Qualification Approach/Commissioning
189(1)
10.9 Risk-Based Approach
189(1)
10.10 Calibration/Verification
189(1)
10.11 Track Performance Verification/Calibration Due Date
190(1)
10.12 Warning Letters Related to Laboratory Equipment
190(1)
10.13 Equipment Qualification/Validation and Its Importance
190(2)
10.14 Examples
192(20)
10.14.1 HPLC (High-Performance Liquid Chromatography)
192(1)
10.14.2 UV/Visible Spectrophotometer
192(9)
10.14.3 Autotitrator
201(1)
10.14.4 Karl Fischer Titrators
201(1)
10.14.5 Weighing Balance
201(1)
10.14.6 Auto Pipettes
201(8)
10.14.7 Gas Chromatography
209(1)
10.14.8 Analytical Column Qualification
209(1)
10.14.9 Melting Point
209(3)
10.15 Qualification Status of Existing Equipment/Instrument
212(1)
10.16 Summary
212(3)
Acknowledgments
215(1)
References
215(2)
List of Abbreviations
217(4)
Index 221
Behnam Davani, PhD, has more than 25 years' experience in analytical chemistry, compendial and regulatory science, QC/QA and cGMPs. He is Principal Scientific Liaison in the General Chapters Group, Science Division of the United States Pharmacopeia (USP). In this role, he coordinates the identification and scientific development of compendial courses for stakeholders worldwide. He is also an active faculty for USP Global Education and Training department and teaches several compendial courses including method validation/verification/transfer, impurities in drug substances and products, compendial HPLC, residual solvents, stability studies for drug substances and products, and spectroscopy. He has taught these courses in the US as well as to international regulatory bodies and global pharmaceutical industries including in Europe, Canada, China, India, Russia, Korea, Latin America, Middle East, and North Africa.