Atjaunināt sīkdatņu piekrišanu

Pharmaceutical Crystals: Science and Engineering [Hardback]

  • Formāts: Hardback, 528 pages, height x width x depth: 231x152x31 mm, weight: 862 g
  • Izdošanas datums: 30-Nov-2018
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 1119046297
  • ISBN-13: 9781119046295
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 245,82 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 528 pages, height x width x depth: 231x152x31 mm, weight: 862 g
  • Izdošanas datums: 30-Nov-2018
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 1119046297
  • ISBN-13: 9781119046295
Citas grāmatas par šo tēmu:

An important resource that puts the focus on understanding and handling of organic crystals in drug development

Since a majority of pharmaceutical solid-state materials are organic crystals, their handling and processing are critical aspects of drug development. Pharmaceutical Crystals: Science and Engineering offers an introduction to and thorough coverage of organic crystals, and explores the essential role they play in drug development and manufacturing. Written contributions from leading researchers and practitioners in the field, this vital resource provides the fundamental knowledge and explains the connection between pharmaceutically relevant properties and the structure of a crystal.

Comprehensive in scope, the text covers a range of topics including: crystallization, molecular interactions, polymorphism, analytical methods, processing, and chemical stability. The authors clearly show how to find solutions for pharmaceutical form selection and crystallization processes. Designed to be an accessible guide, this book represents a valuable resource for improving the drug development process of small drug molecules. This important text:

  • Includes the most important aspects of solid-state organic chemistry and its role in drug development
  • Offers solutions for pharmaceutical form selection and crystallization processes
  • Contains a balance between the scientific fundamental and pharmaceutical applications
  • Presents coverage of crystallography, molecular interactions, polymorphism, analytical methods, processing, and chemical stability 

Written for both practicing pharmaceutical scientists, engineers, and senior undergraduate and graduate students studying pharmaceutical solid-state materials, Pharmaceutical Crystals: Science and Engineering is a reference and textbook for understanding, producing, analyzing, and designing organic crystals which is an imperative skill to master for anyone working in the field.

List of Contributors
xiii
Preface xv
1 Crystallography
1(46)
Susan M. Reutzel-Edens
Peter Muller
1.1 Introduction
1(5)
1.2 History
6(1)
1.3 Symmetry
7(10)
1.3.1 Symmetry in Two Dimensions
7(4)
1.3.2 Symmetry and Translation
11(1)
1.3.3 Symmetry in Three Dimensions
12(1)
1.3.4 Metric Symmetry of the Crystal Lattice
13(1)
1.3.5 Conventions and Symbols
14(1)
1.3.6 Fractional Coordinates
15(1)
1.3.7 Symmetry in Reciprocal Space
15(2)
1.4 Principles of X-ray Diffraction
17(7)
1.4.1 Bragg's Law
17(2)
1.4.2 Diffraction Geometry
19(1)
1.4.3 Ewald Construction
19(2)
1.4.4 Structure Factors
21(1)
1.4.5 Statistical Intensity Distribution
22(1)
1.4.6 Data Collection
23(1)
1.5 Structure Determination
24(9)
1.5.1 Space Group Determination
24(1)
1.5.2 Phase Problem and Structure Solution
25(3)
1.5.3 Structure Refinement
28(4)
1.5.3.1 Resonant Scattering and Absolute Structure
32(1)
1.6 Powder Methods
33(6)
1.6.1 Powder Diffraction
34(1)
1.6.2 NMR Crystallography
35(4)
1.7 Crystal Structure Prediction
39(2)
1.8 Crystallographic Databases
41(1)
1.9 Conclusions
42(5)
References
43(4)
2 Nucleation
47(42)
Junbo Gong
Weiwei Tang
2.1 Introduction
47(1)
2.2 Classical Nucleation Theory
48(15)
2.2.1 Thermodynamics
48(3)
2.2.2 Kinetics of Nucleation
51(2)
2.2.3 Metastable Zone
53(5)
2.2.4 Induction Time
58(2)
2.2.5 Heterogeneous Nucleation
60(3)
2.3 Nonclassical Nucleation
63(3)
2.3.1 Two-Step Mechanism
63(3)
2.3.2 Prenucleation Cluster Pathway
66(1)
2.4 Application of Primary Nucleation
66(7)
2.4.1 Understanding and Control of Polymorphism
66(5)
2.4.2 Liquid-Liquid Phase Separation
71(2)
2.5 Secondary Nucleation
73(8)
2.5.1 Origin from Solution
74(1)
2.5.2 Origin from Crystals
75(1)
2.5.3 Kinetics
76(1)
2.5.4 Application to Continuous Crystallization
76(3)
2.5.5 Crystal Size Distribution
79(1)
2.5.6 Seeding
80(1)
2.6 Summary
81(8)
References
82(7)
3 Solid-state Characterization Techniques
89(34)
Ann Newman
Robert Wenslow
3.1 Introduction
89(1)
3.2 Techniques
90(19)
3.2.1 X-ray Powder Diffraction (XRPD)
90(4)
3.2.2 Thermal Methods
94(1)
3.2.2.1 Differential Scanning Calorimetry
94(1)
3.2.2.2 Thermogravimetric Analysis (TGA)
95(2)
3.2.3 Spectroscopy
97(1)
3.2.3.1 Infrared (IR)
97(2)
3.2.3.2 Raman Spectroscopy
99(2)
3.2.3.3 Solid-state Nuclear Magnetic Resonance (SSNMR)
101(4)
3.2.4 Water Sorption
105(1)
3.2.5 Microscopy
106(3)
3.3 Case Study LY334370 Hydrochloride (HCI)
109(5)
3.4 Summary
114(9)
References
114(9)
4 Intermolecular Interactions and Computational Modeling
123(46)
Alessandra Mattei
Tonglei Li
4.1 Introduction
123(1)
4.2 Foundation of Intermolecular Interactions
124(6)
4.2.1 Electrostatic Interactions
125(1)
4.2.2 van der Waals Interactions
126(1)
4.2.3 Hydrogen-bonding Interactions
127(2)
4.2.4 π--π Interactions
129(1)
4.3 Intermolecular Interactions in Organic Crystals
130(10)
4.3.1 Approaches to Crystal Packing Description
130(6)
4.3.2 Impact of Intermolecular Interactions on Crystal Packing
136(2)
4.3.3 Impact of Intermolecular Interactions on Crystal Properties
138(2)
4.4 Techniques for Intermolecular Interactions Evaluation
140(9)
4.4.1 Crystallography
140(1)
4.4.2 Spectroscopy
141(1)
4.4.3 Computational Methods
142(2)
4.4.3.1 Lattice Energy
144(3)
4.4.3.2 Interaction Energy of Molecular Pairs from Crystal Structures
147(2)
4.5 Advances in Understanding Intermolecular Interactions
149(20)
4.5.1 Crystal Structure Prediction
150(2)
4.5.2 Electronic Structural Analysis
152(8)
References
160(9)
5 Polymorphism and Phase Transitions
169(54)
Haichen Nie
Stephen R. Byrn
5.1 Concepts and Overview
169(6)
5.2 Thermodynamic Principles of Polymorphic Systems
175(14)
5.2.1 Monotropy and Enantiotropy
176(3)
5.2.2 Phase Rule
179(1)
5.2.3 Phase Diagrams
179(3)
5.2.4 Phase Stability Rule
182(1)
5.2.4.1 Heat of Transition Rule
182(1)
5.2.4.2 Heat of Fusion Rule
182(1)
5.2.4.3 Entropy of Fusion Rule
183(1)
5.2.4.4 Heat Capacity Rule
183(1)
5.2.4.5 Density Rule
183(1)
5.2.4.6 Infrared Rule
183(1)
5.2.5 Crystallization of Polymorphs
184(1)
5.2.5.1 Ostwald's Rule of Stages
184(1)
5.2.5.2 Nucleation
184(5)
5.3 Stabilities and Phase Transition
189(5)
5.3.1 Thermodynamic Stability
189(1)
5.3.2 Chemical Stability
189(3)
5.3.3 Polymorphic Interconversions of Pharmaceuticals
192(1)
5.3.3.1 Effects of Heat, Compression, and Grinding on Polymorphic Transformation
192(1)
5.3.3.2 Solution-mediated Phase Transformation of Drugs
193(1)
5.4 Impact on Bioavailability by Polymorphs
194(2)
5.5 Regulatory Consideration of Polymorphism
196(3)
5.6 Novel Approaches for Preparing Solid State Forms
199(3)
5.6.1 High-throughput Crystallization Method
200(1)
5.6.2 Capillary Growth Methods
200(1)
5.6.3 Laser-induced Nucleation
201(1)
5.6.4 Heteronucleation on Single Crystal Substrates
201(1)
5.6.5 Polymer Heteronucleation
201(1)
5.7 Hydrates and Solvates
202(5)
5.7.1 Thermodynamics of Hydrates
203(1)
5.7.2 Formation of Hydrates
204(1)
5.7.3 Desolvation Reactions
205(2)
5.7 A Phase Transition of Solvates/Hydrates in Formulation and Process Development
207(2)
5.8 Summary
209(14)
References
210(13)
6 Measurement and Mathematical Relationships of Cocrystal Thermodynamic Properties
223(50)
Gislaine Kuminek
Katie L. Cavanagh
Halt Rodriguez-Hornedo
6.1 Introduction
223(1)
6.2 Structural and Thermodynamic Properties
224(10)
6.2.1 Structural Properties
224(2)
6.2.2 Thermodynamic Properties
226(1)
6.2.2.1 Cocrystal Ksp and Solubility
226(3)
6.2.2.2 Transition Points
229(2)
6.2.2.3 Supersaturation Index Diagrams
231(1)
6.2.3 A Word of Caution About Cmax Obtained from Kinetic Studies
232(2)
6.3 Determination of Cocrystal Thermodynamic Stability and Supersaturation Index
234(12)
6.3.1 Keu Measurement and Relationships Between Ksp, Scc, and SA
234(7)
6.3.2 Cocrystal Solubility and Ksp
241(2)
6.3.3 Cocrystal Supersaturation Index and Drug Solubilization
243(3)
6.4 What Phase Solubility Diagrams Reveal
246(3)
6.5 Cocrystal Discovery and Formation
249(4)
6.5.1 Molecular Interactions That Play an Important Role in Cocrystal Discovery
249(2)
6.5.2 Thermodynamics of Cocrystal Formation Provide Valuable Insight into the Conditions Where Cocrystals May Form
251(2)
6.6 Cocrystal Solubility Dependence on Ionization and Solubilization of Cocrystal Components
253(12)
6.6.1 Mathematical Forms of Cocrystal Solubility and Stability
253(4)
6.6.2 General Solubility Expressions in Terms of the Sum of Equilibrium Concentrations
257(1)
6.6.3 Applications
258(7)
6.7 Conclusions and Outlook
265(8)
References
265(8)
7 Mechanical Properties
273(24)
Changquan Calvin Sun
7.1 Introduction
273(5)
7.1.1 Importance of Mechanical Properties in Pharmaceutical Manufacturing
273(1)
7.1.2 Basic Concepts Related to Mechanical Properties
274(1)
7.1.2.1 Stress, Strain, and Poisson's Ratio
274(2)
7.1.2.2 Elasticity, Plasticity, and Brittleness
276(1)
7.1.2.3 Classification of Mechanical Response
277(1)
7.2 Characterization of Mechanical Properties
278(6)
7.2.1 Experimental Techniques
278(1)
7.2.1.1 Single Crystals
278(3)
7.2.1.2 Bulk Powders
281(1)
7.2.1.3 Tablet Mechanical Properties
282(2)
7.3 Structure-Property Relationship
284(6)
7.3.1 Anisotropy of Organic Crystals
284(2)
7.3.2 Crystal Plasticity, Elasticity, and Fracture
286(1)
7.3.3 Role of Dislocation on Mechanical Properties
287(2)
7.3.4 Effects of Crystal Size and Shape on Mechanical Behavior
289(1)
7.4 Conclusion and Future Outlook
290(7)
References
291(6)
8 Primary Processing of Organic Crystals
297(64)
Peter L.D. Wildfong
Rahul V. Haware
Ting Xu
Kenneth R. Morris
8.1 Introduction
297(3)
8.1.1 Solid Form
297(1)
8.1.2 Morphology
298(2)
8.2 Primary Manufacturing: Processing Materials to Yield Drug Substance
300(19)
8.2.1 Crystallization (Solidification Processing)
301(2)
8.2.1.1 Solvent Power
303(2)
8.2.1.2 Solvent Classification
305(2)
8.2.1.3 Batch Crystallization
307(1)
8.2.1.4 Continuous Crystallization
308(1)
8.2.2 Filtration and Washing
309(4)
8.2.3 Drying (Removal of Crystallization Solvent)
313(2)
8.2.4 Preliminary Particle Sizing
315(4)
8.3 Challenges During Solidification Processing
319(31)
8.3.1 Polymorphism
320(2)
8.3.1.1 Cooling Crystallization
322(3)
8.3.1.2 Solvent Selection
325(3)
8.3.1.3 Antisolvent Crystallization
328(1)
8.3.1.4 Selective Crystallization Using Additives
328(1)
8.3.2 Hydrate and Organic Solvate Formation
329(1)
8.3.2.1 Hydrate Formation
329(6)
8.3.2.2 Organic Solvate Formation
335(2)
8.3.3 Solvent-mediated Transformations (SMTs)
337(5)
8.3.4 Morphology/Habit Control
342(1)
8.3.4.1 Predicting Solvent Effects on Crystal Habit
343(3)
8.3.4.2 Influence of Morphology on Surface Wetting
346(3)
8.3.5 Crystallization Process Control
349(1)
8.4 Summary and Concluding Remarks
350(11)
References
351(10)
9 Secondary Processing of Organic Crystals
361(66)
Peter L.D. Wildfong
Rahul V. Haware
Ting Xu
Kenneth R. Morris
9.1 Introduction
361(4)
9.1.1 Structure and Symmetry
361(1)
9.1.2 Process-induced Transformations (PITs) in 2° Manufacturing
362(3)
9.2 Secondary Manufacturing-Processing Materials to Yield Drug Products
365(46)
9.2.1 Milling of Organic Crystals
366(1)
9.2.1.1 Materials Properties Influencing Milling
366(5)
9.2.1.2 Physical Transformations Associated with Milling
371(4)
9.2.1.3 Chemical Transformations Associated with Milling
375(3)
9.2.2 Pharmaceutical Blending
378(4)
9.2.3 Granulation of Pharmaceutical Materials
382(2)
9.2.3.1 Wet Granulation
384(1)
9.2.3.2 Potential Transformations During Wet Granulation
385(1)
9.2.3.3 Hydration and Dehydration
385(3)
9.2.3.4 Solvent-mediated Transformations (SMT)
388(2)
9.2.3.5 Polymorphic Transitions During Granulation
390(2)
9.2.3.6 Salt Breaking
392(1)
9.2.3.7 Formulation Considerations in Wet Granulation
392(2)
9.2.3.8 Risk Assessment and Summary
394(1)
9.2.4 Consolidation of Organic Crystals
395(2)
9.2.4.1 Materials Properties Contributing to Effective Consolidation
397(5)
9.2.4.2 Structural and Molecular Properties Contributing to Effective Consolidation
402(1)
9.2.4.3 Macroscopic Properties Affecting Effective Consolidation
403(1)
9.2.4.4 Compaction-induced Material Transformations
404(3)
9.2.4.5 Compression Temperature and Material Transformation
407(1)
9.2.5 Data Management Approaches
408(3)
9.3 Summary and Concluding Remarks
411(16)
9.3.1 Development History
411(1)
9.3.2 Risk Assessment
412(1)
References
412(15)
10 Chemical Stability and Reaction
427(36)
Alessandra Mattei
Tonglei Li
10.1 Introduction
427(2)
10.2 Overview of Organic Solid-state Reactions
429(7)
10.2.1 Photochemical Reactions
431(1)
10.2.2 Thermal Reactions
432(1)
10.2.3 Mechanochemical Reactions
433(1)
10.2.4 Hydrolysis Reactions
434(1)
10.2.5 Oxidative Reactions
434(2)
10.3 Mechanisms of Organic Solid-state Reactions
436(9)
10.3.1 General Theoretical Concepts
436(2)
10.3.2 Crystal Packing Effects on the Course of Organic Solid-state Reactions
438(1)
10.3.2.1 Perfect Crystals and Topochemical Control of Organic Solid-state Reactions
438(2)
10.3.2.2 Crystal Defects and Nontopochemical Control of Organic Solid-state Reactions
440(5)
10.4 Kinetics of Chemical Reactions: From Homogeneous to Heterogeneous Systems
445(3)
10.4.1 Fundamental Principles of Chemical Kinetics
445(1)
10.4.2 Solid-state Reaction Kinetics
446(2)
10.5 Factors Affecting Chemical Stability
448(4)
10.5.1 Moisture
448(1)
10.5.2 Temperature
448(2)
10.5.3 Pharmaceutical Processing
450(2)
10.6 Strategies to Prevent Chemical Reactions
452(11)
10.6.1 Formulation-related Approaches
453(1)
10.6.2 Prodrugs
454(1)
References
455(8)
11 Crystalline Nanoparticles
463(29)
Yi Lu
Wei Wu
Tonglei Li
11.1 Introduction
463(4)
11.2 Top-down Technology
467(4)
11.2.1 Media Milling (MM)
467(1)
11.2.2 High-pressure Homogenization (HPH)
468(3)
11.3 Bottom-up Technology
471(9)
11.3.1 Precipitation by Solvent--Antisolvent Mixing
471(2)
11.3.1.1 Sonoprecipitation
473(1)
11.3.1.2 CIJP
473(3)
11.3.1.3 HGCP
476(1)
11.3.2 Supercritical Fluid Techniques
476(2)
11.3.2.1 RESS
478(1)
11.3.2.2 SAS
479(1)
11.3.3 Precipitation by Removal of Solvent
479(1)
11.3.3.1 SFL
479(1)
11.3.3.2 CCDF
479(1)
11.4 Nanoparticle Stabilization
480(2)
11.5 Applications
482(5)
11.5.1 Oral Drug Delivery
482(2)
11.5.2 Parenteral Drug Delivery
484(1)
11.5.3 Pulmonary Drug Delivery
485(1)
11.5.4 Ocular Drug Delivery
486(1)
11.5.5 Dermal Drug Delivery
486(1)
11.6 Characterization of Crystalline Nanoparticles
487(5)
11.6.1 Particle Size and Size Distribution
487(1)
11.6.2 Surface Charge
487(4)
11.6.3 Morphology
491(1)
11.6.4 Crystallinity
491(1)
11.6.5 Dissolution
491(1)
References 492(11)
Index 503
TONGLEI LI is Professor in Industrial & Physical Pharmacy at Purdue University, West Lafayette, IN.

ALESSANDRA MATTEI is a Senior Scientist in Solid State Chemistry at AbbVie, North Chicago, IL.