Atjaunināt sīkdatņu piekrišanu

E-grāmata: Phase Transformations in Metals and Alloys

(University of Exeter, UK), , (University of Oulu, Finland)
  • Formāts: 578 pages
  • Izdošanas datums: 07-Nov-2021
  • Izdevniecība: CRC Press
  • ISBN-13: 9781000467826
  • Formāts - EPUB+DRM
  • Cena: 73,88 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 578 pages
  • Izdošanas datums: 07-Nov-2021
  • Izdevniecība: CRC Press
  • ISBN-13: 9781000467826

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Revised to reflect recent developments in the field, Phase Transformation in Metals and Alloys, Fourth Edition, continues to be the most authoritative and approachable resource on the subject. It supplies a comprehensive overview of specific types of phase transformations, supplemented by practical case studies of engineering alloys. The books unique presentation links a basic understanding of theory with application in a gradually progressive yet exciting manner. Based on the authors teaching notes, the text takes a pedagogical approach and provides examples for applications and problems that can be readily used for exercises.

NEW IN THE FOURTH EDITION











40% of the figures and 30% of the text





Insights provided by numerical modelling techniques such as ab initio, phase field, cellular automaton, and molecular dynamics





Insights from the application of advanced experimental techniques, such as high-energy X-ray diffraction, high-resolution transmission electron microscopy, scanning electron microscopy, combined with electron backscattered diffraction





New treatment of ternary phase diagrams and solubility products





The concept of paraequilibrium in systems containing highly mobile interstitial elements





Thermodynamics of grain boundaries and the influence of segregation on grain boundary diffusion





Reference to software tools for solving diffusion problems in multicomponent systems





Introduction to concepts related to coincident site lattices and methods for determining the dislocation content of grain boundaries and interfaces





Updated treatment of coherency and interface structure including the important fccbcc interfaces





Treatment of metallic glasses expanded to cover critical cooling rate





AustinRickets equation introduced as an alternative to the Avrami equation in the case of precipitation kinetics





Discussion of the effects of overlap in nucleation, growth and coarsening





Discussion of pearlite and bainite transformations updated





Entirely new and extensive treatment of diffusionless martensitic transformations covering athermal and thermally activated martensite in ferrous systems as well as shape memory, superelasticity and rubber-like behavior in ordered nonferrous alloys





New practical applications covering spinodal alloys, fir-tree structures in aluminum castings, AlCuLi aerospace alloys, superelastic and shape memory alloys, quenched and partitioned steels, advanced high-strength steels and martensitic stainless steels





Each chapter now concludes with a summary of the main points





References to scientific publications and suggestions for further reading updated to reflect experimental and computational advances

Aimed at students studying metallurgy and materials science and engineering, the Fourth Edition retains the previous editions popular easy-to-follow style and excellent mix of basic and advanced information, making it ideal for those who are new to the field.

A new solutions manual and PowerPoint figure slides are available to adopting professors.
Preface to the Fourth Edition xi
Preface to the Third Edition xv
Preface to the Second Edition xvii
Preface to the First Edition xix
About the Author of the Fourth Edition xxi
Chapter 1 Thermodynamics and Phase Diagrams
1(62)
1.1 Equilibrium
1(3)
1.2 Single-Component Systems
4(6)
1.2.1 Gibbs Free Energy as a Function of Temperature
4(3)
1.2.2 Pressure Effects
7(2)
1.2.3 The Driving Force for Solidification
9(1)
1.3 Binary Solutions
10(17)
1.3.1 The Gibbs Free Energy of Binary Solutions
10(2)
1.3.2 Ideal Solutions
12(3)
1.3.3 Chemical Potential
15(2)
1.3.4 Regular Solutions
17(3)
1.3.5 Activity
20(2)
1.3.6 Real Solutions
22(1)
1.3.7 Ordered Phases
23(2)
1.3.8 Intermediate Phases
25(2)
1.4 Equilibrium in Heterogeneous Systems
27(3)
1.5 Binary Phase Diagrams
30(11)
1.5.1 A Simple Phase Diagram
30(1)
1.5.2 Systems with a Miscibility Gap
31(1)
1.5.3 Ordered Alloys
32(1)
1.5.4 Simple Eutectic and Peritectic Systems
32(1)
1.5.5 Phase Diagrams Containing Intermediate Phases
33(1)
1.5.6 The Gibbs Phase Rule
33(5)
1.5.7 The Effect of Temperature on Solid Solubility
38(1)
1.5.8 Equilibrium Vacancy Concentration
39(2)
1.6 The Influence of Interfaces on Equilibrium
41(3)
1.7 Ternary Equilibrium
44(11)
1.7.1 Ternary Phase Diagrams
44(4)
1.7.2 Solubility Product
48(5)
1.7.1 Full and Partial Equilibrium
53(2)
1.8 Additional Thermodynamic Relationships for Binary Solutions
55(2)
1.9 The Kinetics of Phase Transformations
57(1)
1.10 Summary of Main Points
58(5)
Exercises
59(2)
References
61(1)
Further Reading
61(2)
Chapter 2 Diffusion
63(50)
2.1 Atomic Mechanisms of Diffusion
63(3)
2.2 Interstitial Diffusion
66(11)
2.2.1 Interstitial Diffusion as a Random Jump Process
66(3)
2.2.2 Effect of Temperature - Thermal Activation
69(2)
2.2.3 Steady-State Diffusion
71(1)
2.2.4 Nonsteady-State Diffusion
72(2)
2.2.5 Solutions to the Diffusion Equation
74(1)
2.2.5.1 Homogenization
74(1)
2.2.5.2 The Carburization of Steel
75(2)
2.3 Substitutional Diffusion
77(15)
2.3.1 Self-Diffusion
77(5)
2.3.2 Vacancy Diffusion
82(1)
2.3.3 Diffusion in Substitutional Alloys
83(8)
2.3.4 Diffusion in Dilute Substitutional Alloys
91(1)
2.4 Atomic Mobility
92(2)
2.5 Tracer Diffusion in Binary Alloys
94(2)
2.6 Diffusion in Ternary Alloys
96(2)
2.7 High-Diffusivity Paths
98(7)
2.7.1 Diffusion along Grain Boundaries
98(6)
2.7.2 Diffusion along Dislocations
104(1)
2.8 Diffusion in Multiphase Binary Systems
105(2)
2.9 Summary of Main Points
107(6)
Exercises
108(3)
References
111(1)
Further Reading
111(2)
Chapter 3 Crystal Interfaces and Microstructure
113(86)
3.1 Interfacial Free Energy
113(1)
3.2 Solid/Vapor Interfaces
114(5)
3.3 Solid/Liquid Interfaces
119(2)
3.4 Boundaries in Single-Phase Solids
121(34)
3.4.1 Low-Angle Grain Boundaries
123(3)
3.4.2 High-Angle and Special Grain Boundaries
126(7)
3.4.3 Grain Boundary Energy of Pure Metals
133(3)
3.4.4 Grain Boundary Energy of Dilute Binary Alloys
136(4)
3.4.5 Equilibrium in Polycrystalline Materials
140(4)
3.4.6 Thermally Activated Migration of Grain Boundaries
144(8)
3.4.7 The Kinetics of Grain Growth
152(3)
3.5 Interphase Interfaces in Solids
155(35)
3.5.1 Fully Coherent Interfaces
155(3)
3.5.2 Partly Coherent Interfaces
158(3)
3.5.3 Incoherent Interfaces
161(1)
3.5.4 Complex Partly Coherent Interfaces
162(6)
3.5.5 Interface Migration: Glissile Interfaces
168(4)
3.5.6 Interface Migration: Non-glissile Interfaces
172(4)
3.5.7 Second-Phase Shape
176(1)
3.5.7.1 Interface Energy Effects
177(6)
3.5.7.2 Strain Energy Effects
183(4)
3.5.8 Coherency Loss
187(3)
3.6 Classification of Phase Transformations
190(1)
3.7 Summary of Main Points
191(8)
Exercises
193(3)
References
196(2)
Further Reading
198(1)
Chapter 4 Solidification
199(64)
4.1 Nucleation in Pure Metals
199(11)
4.1.1 Homogeneous Nucleation
200(4)
4.1.2 The Homogeneous Nucleation Rate
204(1)
4.1.3 Heterogeneous Nucleation
205(5)
4.1.4 Nucleation of Melting
210(1)
4.2 Growth of a Pure Sol id
210(7)
4.2.1 Continuous Growth
210(1)
4.2.2 Lateral Growth
211(1)
4.2.2.1 Surface Nucleation
212(1)
4.2.2.2 Spiral Growth
212(2)
4.2.2.3 Growth from Twin Intersections
214(1)
4.2.3 Heat Flow and Interface Stability
214(3)
4.3 Alloy Solidification
217(21)
4.3.1 Solidification of Single-Phase Alloys
217(1)
4.3.1.1 Equilibrium Solidification
218(1)
4.3.1.2 No Diffusion in Solid, Perfect Mixing in Liquid
219(2)
4.3.1.3 No Diffusion in Solid, Diffusional Mixing in Liquid
221(1)
4.3.1.4 Cellular and Dendritic Solidification
222(5)
4.3.2 Eutectic Solidification
227(6)
4.3.3 Off-Eutectic Alloys
233(4)
4.3.4 Peritectic Solidification
237(1)
4.4 Solidification Macrostructures and Microstructures
238(5)
4.4.1 Chill Zone
240(1)
4.4.2 Columnar Zone
240(1)
4.4.3 Equiaxed Zone
241(1)
4.4.4 Shrinkage Effects
242(1)
4.4.5 Macrosegregation and Microsegregation
242(1)
4.5 Solidification of Fusion Welds
243(5)
4.6 Solidification during Quenching from the Melt
248(1)
4.7 Metallic Glasses
249(2)
4.8 Case Studies of Some Practical Castings and Welds
251(6)
4.8.1 Casting of Carbon and Low-Alloy Steels
251(2)
4.8.2 Casting of High-Speed Steels
253(2)
4.8.3 Stainless Steel Weld Metal
255(2)
4.9 Summary of Main Points
257(6)
Exercises
258(2)
References
260(1)
Further Reading
261(2)
Chapter 5 Diffusional Transformations in Solids
263(112)
5.1 Homogeneous Nucleation in Solids
264(6)
5.2 Heterogeneous Nucleation
270(7)
5.2.1 Heterogeneous Nucleation Sites
270(1)
5.2.1.1 Grain Boundaries
270(3)
5.2.1.2 Dislocations
273(1)
5.2.1.3 Excess Vacancies
274(1)
5.2.2 Rate of Heterogeneous Nucleation
275(2)
5.3 Precipitate Growth
277(7)
5.3.1 Growth behind Planar Incoherent Interfaces
277(3)
5.3.2 Diffusion-Controlled Lengthening of Plates or Needles
280(2)
5.3.3 Thickening of Plate-like Precipitates
282(2)
5.4 Overall Transformation Kinetics - TTT Diagrams
284(4)
5.5 Precipitation in Age-Hardening Alloys
288(22)
5.5.1 Precipitation in Aluminum-Copper Alloys
288(1)
5.5.1.1 GP Zones
288(2)
5.5.1.2 Transition Phases
290(5)
5.5.2 Precipitation in Aluminum-Silver Alloys
295(1)
5.5.3 Quenched-in Vacancies
296(3)
5.5.4 Age Hardening
299(3)
5.5.5 Spinodal Decomposition
302(6)
5.5.6 Particle Coarsening
308(1)
5.5.6.1 Low γ
309(1)
5.5.6.2 Low Xe
310(1)
5.5.6.3 Low D
310(1)
5.6 The Precipitation of Ferrite from Austenite
310(8)
5.7 Cellular Precipitation
318(2)
5.8 Eutectoid Transformations
320(29)
5.8.1 Pearlite in Fe-C Alloys
321(1)
5.8.1.1 Nucleation of Pearlite
322(1)
5.8.1.2 Pearlite Growth and Dissipation of Free Energy
323(5)
5.8.1.3 Pearlite in Off-Eutectoid Fe-C Alloys
328(1)
5.8.2 Bainite in Fe-C Alloys and Steels
328(3)
5.8.2.1 Ferrite Growth in Upper Bainite
331(2)
5.8.2.2 Carbide Morphology in Upper Bainite
333(1)
5.8.2.3 Lower Bainite
334(4)
5.8.2.4 Transformation Shears and Stored Energy
338(1)
5.8.3 The Effect of Alloying Elements
338(6)
5.8.4 Continuous Cooling Diagrams
344(2)
5.8.5 Fibrous and Interphase Precipitation in Alloy Steels
346(3)
5.9 Massive Transformations
349(4)
5.10 Ordering Transformations
353(5)
5.11 Case Studies
358(10)
5.11.1 Titanium Forging Alloys
358(3)
5.11.2 Aluminum Copper Lithium Alloy (AA2198)
361(4)
5.11.3 Nanostructured Bainite
365(3)
5.12 Summary of Main Points
368(7)
Exercises
370(1)
References
371(2)
Further Reading
373(2)
Chapter 6 Diffusionless Martensitic Transformations
375(128)
6.1 Introduction to Martensite in Ferrous Systems
376(2)
6.2 Ferrous Martensite Morphologies and Crystallography
378(13)
6.2.1 Lath Martensite
379(4)
6.2.2 Plate Martensite: Thin Plate and Lenticular Plate Martensite
383(3)
6.2.3 Tetragonality of bcc and bet Martensite
386(4)
6.2.4 Epsilon Martensite
390(1)
6.3 Mechanical Twinning in bcc Metals
391(4)
6.4 Athermal Nucleation and Growth: FCC → HCP
395(9)
6.5 Athermal Nucleation and Growth: FCC → BCC
404(42)
6.5.1 Atomic Movements Producing the fee → bec/bet Transformation
404(6)
6.5.2 Nucleation and Early Growth of a Martensite
410(6)
6.5.3 Growth of Athermal a Martensite During Cooling
416(1)
6.5.3.1 Growth of Plate and Lath Martensite
416(8)
6.5.3.2 Kinetics of Athermal Martensite
424(2)
6.5.4 The Martensite Start Temperature
426(2)
6.5.4.1 Lath or Plate Martensite?
428(1)
6.5.4.2 Empirical Formulae for Ms
429(2)
6.5.4.3 Critical Driving Force
431(1)
6.5.4.4 The Effect of Grain Size on the Martensite Start Temperature
432(2)
6.5.4.5 The Effect of Applied Elastic Stress on the Martensite Start Temperature
434(2)
6.5.4.6 The Effect of Applied Plastic Strain on the Martensite Start Temperature
436(1)
6.5.4.7 The Effect of Applied Magnetic Field on the Martensite Start Temperature
437(1)
6.5.5 Strain-Induced Athermal a'-Martensite
437(9)
6.6 Thermally Activated a'-Martensite
446(5)
6.7 Carbon Diffusion Phenomena in Ferrous Martensites
451(19)
6.7.1 Autotempering
451(6)
6.7.2 Quenched and Partitioned Steels
457(4)
6.7.3 Tempering after Quenching
461(1)
6.7.3.1 Tempering of Carbon and Low-Alloy Steel
461(6)
6.7.3.2 Secondary Hardening
467(2)
6.7.3.3 Maraging Steels
469(1)
6.8 Athermal Nucleation and Growth: Ordered Alloys
470(7)
6.8.1 Thermoelastic Martensite
470(2)
6.8.2 Superelasticity and Shape Memory
472(1)
6.8.2.1 Superelasticity
472(1)
6.8.2.2 Shape Memory
473(3)
6.8.3 Rubber-Like Behavior
476(1)
6.9 Phenomenological Theory of Martensite Crystallography
477(3)
6.10 Case Studies
480(13)
6.10.1 Martensite in Advanced High-Strength Sheet Steels
481(3)
6.10.2 Bearing Steel 100Cr6/52100
484(5)
6.10.3 Martensitic Stainless Steels
489(4)
6.10 Summary of Main Points
493(10)
Exercises
495(3)
References
498(3)
Further Reading
501(2)
Solutions to Odd-numbered Exercises
503(42)
Chapter 1
503(7)
Chapter 2
510(8)
Chapter 3
518(8)
Chapter 4
526(10)
Chapter 5
536(4)
Chapter 6
540(5)
Index 545
David Porter studied materials science in Cambridge obtaining his Ph.D. in 1976. He subsequently moved to the University of Luleå, where he applied electron microscopy to materials research and taught courses on electron microscopy and phase transformations. He subsequently worked in the research and development departments of the Norwegian aluminum company Årdal og Sunndal Verk and the steel producers Rautaruukki in Finland, and Fundia Special Bar in Sweden. In 2011 he returned to academia as professor of physical metallurgy at the University of Oulu where he has been professor emeritus since 2019.