Atjaunināt sīkdatņu piekrišanu

E-grāmata: Phase Transformations in Steels: Fundamentals and Diffusion-Controlled Transformations

Edited by (University of Wollongong, Australia), Edited by (University of Leeds, UK)
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 226,04 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Materials scientists and engineers and metallurgists trace the evolving understanding of phase transformations in iron alloys and steels from the earliest studies to the development of modern commercial steels. They particularly highlight how phase transformation studies, however isolated and remote they may seem at the outset, are connected to the emergence of new steels with enhanced engineering properties. This first of two volumes covers fundamentals of phase transformations, diffusion-controlled transformations, bainite and diffusional-displacive transformations, and additional driving forces for transformations. Among specific topics are the thermodynamics of phase transformations in steels, kinetics, proeutectoid ferrite and cementite transformations in steels, carbide-free bainite in steels, and nucleation and growth during the austenite-to-ferrite phase transformation in steels after plastic deformation. The second volume covers diffusionless transformations, high strength steels, modeling, and advanced analytic techniques. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com)

The processing-microstructure-property relationships in steels continue to present challenges to researchers due to the complexity of phase transformation reactions and the wide spectrum of microstructures and properties achievable. This major two-volume work summarizes the current state of research on phase transformations in steels and its implications for the emergence of new steels with enhanced engineering properties.

Volume 1 reviews fundamentals and diffusion-controlled phase transformations. After an overview of the historical development of phase transformations, chapters in part one discuss fundamental principles of thermodynamics, diffusion and kinetics as well as phase boundary interfaces. Chapters in part two go on to consider ferrite formation, proeutectoid ferrite and cementite transformations, pearlite formation and massive austenite-ferrite phase transformations. The third part discusses the mechanisms of bainite transformations, including carbide-containing and carbide-free bainite. The final section considers additional driving forces for transformation including nucleation and growth during austenite-to-ferrite phase transformations, dynamic strain-induced ferrite transformations (DIST) as well as the effects of magnetic fields and heating rates.

Recenzijas

"The two volumes represent a thorough study on this subject...gives a better understanding on microstructural and mechanical behavior of steels, predict their lifetime evolution and act to prevent material degradation and significant environmental impacts." --International Journal of Environmental Studies, Vol 70, Issue 2-13

"A new and comprehensive book on phase transformations is both timely and welcome. The various chapters bring nicely up-to-date the vast knowledge of steel transformations in the literature." --Professor Ted Massalski, Carnegie Mellon University, USA (from the Foreword)

"This book updates works on diffusion-controlled phase transformations in steels. Researchers will find it essential for reference." --Materials World

Contributor contact details xi
Foreword xv
Introduction xvii
Part I Fundamentals of phase transformations
1(184)
1 The historical development of phase transformations understanding in ferrous alloys
3(53)
R. E. Hackenberg
1.1 Introduction
3(2)
1.2 The legacy of ferrous technology, characterization, and understanding prior to 1880
5(3)
1.3 The recognition of ferrous phase transformations in the first period (1880-1925)
8(13)
1.4 The consolidation of ferrous phase transformations in the second period (1925-1970)
21(16)
1.5 Conclusion
37(1)
1.6 Bibliography
38(2)
1.7 References
40(16)
2 Thermodynamics of phase transformations in steels
56(38)
J. Agren
2.1 Introduction: the use of thermodynamics in phase transformations
56(1)
2.2 External and internal variables
57(3)
2.3 The state of equilibrium
60(2)
2.4 The combined first and second law --- its application
62(10)
2.5 The calculation of thermodynamic properties and equilibrium under fixed T, P and composition
72(2)
2.6 Gibbs energy of phases in steel --- the Calphad method
74(6)
2.7 Various kinds of phase diagrams
80(5)
2.8 Effect of interfaces
85(6)
2.9 Thermodynamics of fluctuations in equilibrium systems
91(1)
2.10 Thermodynamics of nucleation
92(1)
2.11 References
93(1)
3 Fundamentals of diffusion in phase transformations
94(32)
M. Hillert
3.1 Introduction
94(2)
3.2 Driving forces of simultaneous processes
96(2)
3.3 Atomistic model of diffusion
98(3)
3.4 Change to a new frame of reference
101(12)
3.5 Evaluation of mobilities
113(6)
3.6 Trapping and transition to diffusionless transformation
119(4)
3.7 Future trends
123(1)
3.8 Acknowledgement
124(1)
3.9 References
125(1)
4 Kinetics of phase transformations in steels
126(31)
S. Van Der Zwaag
4.1 Introduction
126(2)
4.2 General kinetic models
128(1)
4.3 Geometrical/microstructural aspects in kinetics
129(3)
4.4 Nucleation
132(7)
4.5 Growth
139(2)
4.6 Experimental methods
141(9)
4.7 Industrial relevance
150(1)
4.8 Acknowledgements
151(1)
4.9 References
152(5)
5 Structure, energy and migration of phase boundaries in steels
157(28)
M. Enomoto
5.1 Introduction
157(1)
5.2 Atomic structure of phase boundaries
158(5)
5.3 Free energies of phase boundaries
163(8)
5.4 Migration of phase boundaries
171(6)
5.5 Conclusions and future trends
177(2)
5.6 References
179(6)
Part II Diffusion-controlled transformations
185(198)
6 Fundamentals of ferrite formation in steels
187(38)
M. Strangwood
6.1 Introduction
187(2)
6.2 Crystallography
189(4)
6.3 Transformation ranges
193(5)
6.4 Nucleation
198(10)
6.5 Growth
208(8)
6.6 Conclusions
216(1)
6.7 References
216(9)
7 Proeutectoid ferrite and cementite transformations in steels
225(51)
M. V. Kral
7.1 Introduction
225(2)
7.2 Temperature-composition range of formation of proeutectoid ferrite and cementite
227(2)
7.3 The Dube morphological classification system
229(4)
7.4 Three-dimensional morphological classifications
233(22)
7.5 Crystallographic orientation relationships with austenite
255(3)
7.6 Habit plane, growth direction and interfacial structure of proeutectoid precipitates
258(8)
7.7 Future trends
266(1)
7.8 Sources of further information and advice
266(1)
7.9 Acknowledgements
267(1)
7.10 References
267(9)
8 The formation of pearlite in steels
276(35)
D. Embury
8.1 Introduction
276(2)
8.2 An overview of the pearlite reaction
278(7)
8.3 Crystallographic aspects of the reaction
285(6)
8.4 The role of alloying elements
291(7)
8.5 The deformation of pearlite
298(5)
8.6 Future trends in pearlitic steels
303(3)
8.7 Sources of further information and advice
306(1)
8.8 Acknowledgements
307(1)
8.9 References
307(4)
9 Nature and kinetics of the massive austenite-ferrite phase transformations in steels
311(72)
Y. Liu
P. R. China
F. Sommer
E. J. Mittemeijer
9.1 Introduction
311(3)
9.2 Kinetic information based on thermal analysis
314(1)
9.3 Modular phase transformation model
315(5)
9.4 Characteristics of normal and abnormal transformations
320(12)
9.5 Kinetics of the normal transformation
332(6)
9.6 Kinetics of the abnormal transformation
338(7)
9.7 Transition from diffusion-controlled growth to interface-controlled growth
345(15)
9.8 Transition from interface-controlled growth to diffusion-controlled growth
360(7)
9.9 Massive transformation under uniaxial compressive stress
367(10)
9.10 Conclusion
377(1)
9.11 References
377(6)
Part III Bainite and diffusional-displacive transformations
383(120)
10 Mechanisms of bainite transformation in steels
385(32)
S. B. Singh
10.1 Introduction
385(1)
10.2 Bainite: general characteristics
386(5)
10.3 Diffusion-controlled growth mechanism
391(5)
10.4 Displacive mechanism of transformation
396(15)
10.5 Summary and conclusion
411(1)
10.6 References
412(5)
11 Carbide-containing bainite in steels
417(19)
T. Furuhara
11.1 Definitions of bainite structure
417(6)
11.2 Crystallography and related characteristics of ferrite in bainite
423(6)
11.3 Characteristics of carbide precipitation in bainite structure
429(4)
11.4 Future trends
433(1)
11.5 References
433(3)
12 Carbide-free bainite in steels
436(32)
F. G. Caballero
12.1 Introduction
436(6)
12.2 Influence of silicon on cementite precipitation in steels
442(4)
12.3 Carbon distribution during the carbide-free bainite reaction
446(10)
12.4 Microstructural observations of plastic accommodation in carbide-free bainite
456(5)
12.5 Conclusions
461(1)
12.6 Acknowledgement
462(1)
12.7 References
463(5)
13 Kinetics of bainite transformation in steels
468(35)
A. Borgenstam
M. Hillert
13.1 Introduction
468(2)
13.2 Transformation diagrams
470(7)
13.3 Nucleation and growth of bainite
477(8)
13.4 Start temperature of bainite
485(6)
13.5 Effect of alloying elements
491(3)
13.6 Overall kinetics
494(5)
13.7 Conclusions
499(1)
13.8 Acknowledgement
499(1)
13.9 References
499(4)
Part IV Additional driving forces for transformations
503(116)
14 Nucleation and growth during the austenite-to-ferrite phase transformation in steels after plastic deformation
505(22)
J. Sietsma
14.1 Introduction
505(1)
14.2 Background
506(10)
14.3 Experiments and simulations on the effect of plastic deformation on ferrite formation
516(7)
14.4 Future trends and conclusion
523(1)
14.5 References
524(3)
15 Dynamic strain-induced ferrite transformation (DSIT) in steels
527(28)
P. D. Hodgson
H. Beladi
15.1 Introduction
527(1)
15.2 What limits grain refinement in conventional static transformation?
528(4)
15.3 Ultrafine ferrite formation in steels
532(4)
15.4 Nature of the transformation
536(7)
15.5 Modelling
543(3)
15.6 Can grain sizes less than 1 μm be achieved?
546(2)
15.7 Industrial implementation
548(1)
15.8 Future trends
548(2)
15.9 Conclusions
550(1)
15.10 Acknowledgements
550(1)
15.11 References
550(5)
16 The effect of a magnetic field on phase transformations in steels
555(26)
Y. Zhang
C. Esling
16.1 Introduction
555(1)
16.2 Evolution of the magnetic field generators
556(1)
16.3 Basic mechanisms of field influence on a phase transformation in steels
557(3)
16.4 Effect of magnetic field on phase equilibrium and transformation
560(17)
16.5 Future trends and conclusions
577(1)
16.6 References
577(4)
17 The effect of heating rate on reverse transformations in steels and Fe-Ni-based alloys
581(38)
Yu. Ya. Meshkov
E. V. Pereloma
17.1 Introduction
581(1)
17.2 Effect of heating rate on austenite formation in steels
582(10)
17.3 Effect of heating rate on austenite microstructure after γ→α(α')→γ phase transformations in quenched steels
592(8)
17.4 Effect of rapid heating on mechanical properties of steels and its applications
600(2)
17.5 Effect of heating rate on the reverse austenite transformation in Fe-Ni-based alloys
602(10)
17.6 Conclusions
612(1)
17.7 References
613(6)
Index 619
Elena Pereloma is Professor of Physical Metallurgy and Director of the BlueScope Steel Metallurgy Centre at the University of Wollongong, Australia. David V. Edmonds is Emeritus Professor of Metallurgy at University of Leeds, UK. Both have made major contributions to steel research.