Atjaunināt sīkdatņu piekrišanu

E-grāmata: Photoacoustic Tomography [Taylor & Francis e-book]

(University of Florida, Gainesville, USA)
  • Formāts: 304 pages, 10 Tables, black and white; 32 Illustrations, color; 186 Illustrations, black and white
  • Izdošanas datums: 16-Dec-2014
  • Izdevniecība: CRC Press Inc
  • ISBN-13: 9781315213903
Citas grāmatas par šo tēmu:
  • Taylor & Francis e-book
  • Cena: 271,26 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Standarta cena: 387,50 €
  • Ietaupiet 30%
  • Formāts: 304 pages, 10 Tables, black and white; 32 Illustrations, color; 186 Illustrations, black and white
  • Izdošanas datums: 16-Dec-2014
  • Izdevniecība: CRC Press Inc
  • ISBN-13: 9781315213903
Citas grāmatas par šo tēmu:

The concept of photoacoustic tomography (PAT) emerged in the mid-1990s, and the field of PAT is now rapidly moving forward. Presenting the research of a well-respected pioneer and leading expert, Photoacoustic Tomography is a first-of-its-kind book covering the underlying principles and practical applications of PAT in a systematic manner. Written in a tutorial format, the text:

  • Addresses the fundamentals of PAT, the theory on photoacoustic effect, image reconstruction methods, and instrumentation
  • Details advanced methods for quantitative PAT, which allow the recovery of tissue optical absorption coefficient and/or acoustic properties
  • Explores the development of several image-enhancing schemes, including both software and hardware approaches
  • Examines array-based PAT systems that are the foundation for the realization of 2-D, 3-D, and 4-D PAT
  • Discusses photoacoustic microscopy (PAM) and combinations of PAT/PAM with other imaging methods
  • Considers contrast-agents-based molecular PAT, with both nontargeted and cell receptor–targeted methods
  • Describes clinical applications and animal studies in breast cancer detection, osteoarthritis diagnosis, seizure localization, intravascular imaging, and image-guided cancer therapy

Photoacoustic Tomography is an essential reference for graduate students, researchers, industry professionals, and those who wish to enter this exciting field.

Preface xi
About the Author xiii
Chapter 1 Fundamentals of Photoacoustic Tomography
1(14)
1.1 Photoacoustic Effect
1(4)
1.1.1 Empirical Description
1(3)
1.1.2 Rigorous Theory
4(1)
1.2 Image Reconstruction Methods
5(8)
1.2.1 Delay-and-Sum Beam Forming Algorithm
5(1)
1.2.2 Iterative Nonlinear Algorithm
6(1)
1.2.2.1 Frequency-Domain FE-Based Algorithm
6(2)
1.2.2.2 Time-Domain FE-Based Algorithm
8(3)
1.2.3 A-Line/B-Mode Image Formation Method
11(2)
1.3 Instrumentation
13(2)
Chapter 2 Quantitative Photoacoustic Tomography
15(32)
2.1 Recovery of Optical Absorption Coefficient: Method 1
15(5)
2.2 Recovery of Optical Absorption Coefficient: Method 2
20(4)
2.3 Recovery of Optical Absorption Coefficient: Method 3
24(5)
2.4 Recovery of Optical Absorption Coefficient: Method 4
29(5)
2.5 Simultaneous Recovery of Optical Absorption Coefficient and Acoustic Velocity
34(7)
2.6 Multispectral PAT
41(6)
Chapter 3 Image Enhancement Software and Hardware Approaches
47(62)
3.1 Dual Mesh Scheme
47(2)
3.2 Adjoint Sensitivity Method
49(1)
3.3 Total-Variation-Minimization Scheme
50(17)
3.3.1 Mathematical Derivations
51(2)
3.3.2 Examples: Reduction of Noise Effect
53(1)
3.3.2.1 Simulations
53(5)
3.3.2.2 Phantom Experiments
58(4)
3.3.3 Examples: Image Reconstruction from Few-Detector and Limited-Angle Data
62(5)
3.4 Radiative Transfer Equation
67(16)
3.4.1 The RTE and Its Finite Element Discretization
69(3)
3.4.2 The RTE-Based Quantitative PAT
72(1)
3.4.3 Results and Discussion
73(1)
3.4.3.1 Comparison of the Transport and Diffusion Calculations
73(2)
3.4.3.2 Comparison of the DE- and RTE-Based qPAT
75(8)
3.5 Parallel Computation
83(2)
3.6 Variable-Thickness Multilayered Polyvinylidene Fluoride Transducer
85(6)
3.7 AlN-Based Piezoelectric Micromachined Ultrasonic Transducer
91(6)
3.8 Liquid Acoustic Lens
97(6)
3.9 Microelectromechanical Systems Scanning Mirror
103(6)
3.9.1 Photoacoustic Imaging System
103(2)
3.9.2 Results and Discussion
105(4)
Chapter 4 Transducer Array-Based Photoacoustic Tomography: 2D, 3D, and 4-D Photoacoustic Imaging
109(22)
4.1 Array-Based PAT System and 2D Imaging
109(10)
4.1.1 Laser Source
111(1)
4.1.2 Full-Ring Ultrasound Transducer Array
112(1)
4.1.3 Control Electronics and Data Acquisition
112(2)
4.1.4 System Evaluation and Experimental Studies
114(1)
4.1.4.1 System Calibration
114(2)
4.1.4.2 Spatial Resolution
116(1)
4.1.4.3 Phantom Evaluation
117(2)
4.2 3D Imaging
119(5)
4.2.1 System Description
119(2)
4.2.2 Phantom Experiments
121(2)
4.2.3 In Vivo Experiments
123(1)
4.3 4-D Imaging
124(7)
4.3.1 Drug Delivery Monitoring
126(1)
4.3.2 Tumor Therapy Monitoring
126(5)
Chapter 5 Photoacoustic Microscopy and Photoacoustic Computed Microscopy
131(38)
5.1 Optical-Resolution Photoacoustic Microscopy
131(1)
5.2 Acoustic-Resolution Photoacoustic Microscopy
132(3)
5.3 C-Scan Photoacoustic Microscopy
135(5)
5.3.1 Materials and Methods
135(1)
5.3.1.1 Experimental Setup
135(1)
5.3.1.2 Image Reconstruction Method
136(1)
5.3.1.3 Phantom Preparation
136(1)
5.3.1.4 Animal Preparation and Histological Sectioning
136(1)
5.3.2 Results and Discussion
137(1)
5.3.2.1 Phantom Experiments
137(1)
5.3.2.2 In Vivo Experiments
138(2)
5.4 Photoacoustic Computed Microscopy
140(15)
5.4.1 Methods
141(1)
5.4.1.1 PAM Imaging System
141(1)
5.4.1.2 Phantom Experiments
142(1)
5.4.1.3 Animal Experiments
142(1)
5.4.1.4 Image Reconstruction
143(2)
5.4.2 Results
145(4)
5.4.3 Discussion
149(6)
5.5 Photoacoustic Microscopy Based on Acoustic Lens with Variable Focal Length
155(5)
5.6 Confocal Photoacoustic Microscopy Using a Single Multifunctional Lens
160(9)
Chapter 6 Multimodal Approaches
169(24)
6.1 PAT/DOT
169(10)
6.1.1 Material and Methods
169(1)
6.1.1.1 System Description
169(3)
6.1.1.2 Quantitative Reconstruction Algorithms
172(1)
6.1.2 Results and Discussion
172(1)
6.1.2.1 Spatial Resolution of the System
173(1)
6.1.2.2 PAT Performance
173(2)
6.1.2.3 PAT and DOT Comparison
175(2)
6.1.2.4 Ex Vivo Experiment
177(2)
6.2 PAT/FMT
179(7)
6.2.1 Methods
180(2)
6.2.2 Results and Discussion
182(1)
6.2.2.1 Comparison of Image Pattern
183(1)
6.2.2.2 Comparison of Spatial Resolution
184(1)
6.2.2.3 Comparison of Sensitivity
185(1)
6.3 PAT/Ultrasound
186(2)
6.4 Optical-Resolution PAM/OCT
188(5)
6.4.1 Materials and Methods
188(3)
6.4.2 Results and Discussion
191(2)
Chapter 7 Contrast Agents-Based Molecular Photoacoustic Tomography
193(30)
7.1 Gold Nanoparticles
193(3)
7.2 Graphene Nanosheets
196(2)
7.3 Urokinase Plasminogen Activator Receptor (uPAR)-Targeted Magnetic Iron Oxide Nanoparticles (NIR830-ATF-IONP)
198(9)
7.3.1 Material and Methods
198(1)
7.3.1.1 Cell Line
198(1)
7.3.1.2 Preparation of NIR830-ATF-IONP and Control NIR830-Bovine Serum Albumin-IONP (NIR830-BSA-IONP)
198(2)
7.3.1.3 Animal Tumor Model
200(1)
7.3.1.4 Photoacoustic Microscopy Imaging System
200(1)
7.3.1.5 Near-Infrared Planar Fluorescence Imaging System
201(1)
7.3.1.6 Image Processing
201(1)
7.3.1.7 Histological Analysis
201(1)
7.3.1.8 Statistical Analysis
202(1)
7.3.2 Results
202(3)
7.3.3 Discussion
205(2)
7.4 HER-2/neu Targeted Magnetic Iron Oxide Nanoparticles for Dual-Modal Photoacoustic and Fluorescence Molecular Tomography (PAT/FMT) of Ovarian Cancer
207(16)
7.4.1 Methods
208(1)
7.4.1.1 Cell Lines
208(1)
7.4.1.2 HER-2/neu Specific Affibody Conjugation to IONP
208(2)
7.4.1.3 Preparation of NIR-Bovine Serum Albumin-IONP (NIR-830-BSA-IONPs)
210(1)
7.4.1.4 Evaluation of Labeling Efficiency by Prussian Blue Staining
210(1)
7.4.1.5 Orthotopic Human Ovarian Cancer Xenograft Model
210(1)
7.4.1.6 Fluorescence Molecular Tomography Imaging System
211(1)
7.4.1.7 Photoacoustic Imaging System
211(1)
7.4.1.8 In Vivo Planar Fluorescence Imaging
212(1)
7.4.1.9 In Vivo Imaging in Animal Tumor Models
212(1)
7.4.1.10 Histology Analysis
212(1)
7.4.1.11 Statistical Analysis
213(1)
7.4.2 Results
213(6)
7.4.3 Discussion
219(4)
Chapter 8 Clinical Applications and Animal Studies
223(50)
8.1 Joint Imaging
223(19)
8.1.1 2D Single-Spectral Quantitative PAT
224(1)
8.1.1.1 Materials and Methods
224(2)
8.1.1.2 Results and Discussion
226(2)
8.1.2 2D Multispectral Quantitative PAT
228(1)
8.1.2.1 Materials and Methods
228(1)
8.1.2.2 Results and Discussion
228(5)
8.1.3 3D Single-Spectral Quantitative PAT
233(1)
8.1.3.1 Materials and Methods
233(1)
8.1.3.2 Results and Discussion
234(3)
8.1.4 3D Multispectral Quantitative PAT
237(1)
8.1.4.1 Materials and Methods
237(1)
8.1.4.2 Results and Discussion
237(5)
8.2 Intraoperative Imaging
242(6)
8.2.1 Intraoperative Photoacoutc Tomography (iPAT) System
243(1)
8.2.2 Results and Discussion
244(4)
8.3 Brain Imaging
248(10)
8.3.1 Methods
250(1)
8.3.1.1 Animals
250(1)
8.3.1.2 PAT Imaging
250(1)
8.3.1.3 Electrode Implantation Surgery
250(1)
8.3.1.4 Induction of Seizures
251(1)
8.3.1.5 Image Analysis
251(1)
8.3.2 Results and Discussion
251(1)
8.3.2.1 Noninvasive Epileptic Foci Localization
251(1)
8.3.2.2 Real-Time Monitoring of Epileptic Events
252(4)
8.3.2.3 Dynamical Changes of Vasculature during Interictal Discharges
256(2)
8.4 Imaging of Tumor Vasculature Development
258(4)
8.4.1 Methods
258(1)
8.4.1.1 Photoacoustic Imaging System
258(1)
8.4.1.2 Mouse Breast Cancer Xenograft Models
258(1)
8.4.2 Results and Discussion
259(3)
8.5 Intravascular Imaging
262(2)
8.6 Breast Imaging
264(9)
8.6.1 Photoacoustic Tomography System
266(1)
8.6.2 Clinical Experiments
267(1)
8.6.2.1 PAT for Breast Cancer Detection
267(2)
8.6.2.2 PAT for Neoadjuvant Monitoring
269(4)
Bibliography 273(10)
Index 283
Huabei Jiang, Ph.D, is J. Crayton Pruitt family professor in the Department of Biomedical Engineering at the University of Florida, Gainesville, USA. He has published more than 300 peer-reviewed scientific articles and patents. Dr. Jiang is a fellow of the Optical Society of America (OSA), a fellow of the International Society of Optical Engineering (SPIE), and a fellow of the American Institute of Medical and Biological Engineering (AIMBE).