Atjaunināt sīkdatņu piekrišanu

Photocatalysis and Water Purification: From Fundamentals to Recent Applications [Hardback]

Series edited by (University of Queensland, Australia), Edited by (Ecole Centrale de Lyon, France)
  • Formāts: Hardback, 438 pages, height x width x depth: 249x177x27 mm, weight: 1080 g
  • Sērija : Materials for Sustainable Energy and Development
  • Izdošanas datums: 13-Mar-2013
  • Izdevniecība: Blackwell Verlag GmbH
  • ISBN-10: 3527331875
  • ISBN-13: 9783527331871
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 188,60 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 438 pages, height x width x depth: 249x177x27 mm, weight: 1080 g
  • Sērija : Materials for Sustainable Energy and Development
  • Izdošanas datums: 13-Mar-2013
  • Izdevniecība: Blackwell Verlag GmbH
  • ISBN-10: 3527331875
  • ISBN-13: 9783527331871
Citas grāmatas par šo tēmu:
Water is one of the essential resources on our planet. Therefore, fresh water and the recycling of waste-water are very important topics in various areas. Energy-saving green technologies are a demand in this area of research.

Photocatalysis comprises a class of reactions which use a catalyst activated by light. These reactions include the decomposition of organic compounds into environmental friendly water and carbon dioxide, leading to interesting properties of surfaces covered with a photocatalyst: they protect e.g. against incrustation of fouling matter, they are self-cleaning, antibacterial and viricidal. Therefore, they are attractive candidates for environmental applications such as water purification and waste-water treatment.

This book introduces scientists and engineers to the fundamentals of photocatalysis and enlightens the potentials of photocatalysis to increase water quality. Also, strategies to improve the photocatalytic efficacy are pointed out: synthesis of better photocatalysts, combination of photocatalysis with other technologies, and the proper design of photocatalytic reactors. Implementation of applications and a chapter on design approaches for photocatalytic reactors round off the book.

'Photocatalysis and Water Purification' is part of the series on Materials for Sustainable Energy and Development edited by Prof. G.Q. Max Lu. The series covers advances in materials science and innovation for renewable energy, clean use of fossil energy, and greenhouse gas mitigation and associated environmental technologies.
Series Editor Preface xvii
Preface xix
About the Series Editor xxiii
About the Volume Editor xxv
List of Contributors
xxvii
Part I Fundamentals: Active Species, Mechanisms, Reaction Pathways
1(72)
1 Identification and Roles of the Active Species Generated on Various Photocatalysts
3(22)
Yoshio Nosaka
Atsuko Y. Nosaka
1.1 Key Species in Photocatalytic Reactions
3(3)
1.2 Trapped Electron and Hole
6(1)
1.3 Superoxide Radical and Hydrogen Peroxide (O2 and H2O2)
7(2)
1.4 Hydroxyl Radical (OH)
9(3)
1.5 Singlet Molecular Oxygen (1O2)
12(3)
1.6 Reaction Mechanisms for Bare TiO2
15(2)
1.7 Reaction Mechanisms of Visible-Light-Responsive Photocatalysts
17(3)
1.8 Conclusion
20(5)
References
21(4)
2 Photocatalytic Reaction Pathways -- Effects of Molecular Structure, Catalyst, and Wavelength
25(28)
William S. Jenks
2.1 Introduction
25(2)
2.2 Methods for Pathway Determination
27(2)
2.3 Prototypical Oxidative Reactivity in Photocatalytic Degradations
29(10)
2.3.1 Oxidation of Arenes and the Importance of Adsorption
30(1)
2.3.1.1 Hydroxylation and the Source of Oxygen
30(2)
2.3.1.2 Ring-Opening Reactions
32(1)
2.3.1.3 Indicators of SET versus Hydroxyl Chemistry in Aromatic Systems
32(3)
2.3.2 Carboxylic Acids
35(1)
2.3.3 Alcohol Fragmentation and Oxidation
36(1)
2.3.4 Oxidation of Alkyl Substituents
37(1)
2.3.5 Apparent Hydrolysis Reactions
38(1)
2.3.6 Sulfur-Bearing Compounds
39(1)
2.4 Prototypical Reductive Reactivity in Photocatalytic Degradations
39(2)
2.5 The Use of Organic Molecules as Test Probes for Next-Generation Photocatalysts
41(1)
2.6 Modified Catalysts: Wavelength-Dependent Chemistry of Organic Probes
42(2)
2.7 Conclusions
44(9)
References
45(8)
3 Photocatalytic Mechanisms and Reaction Pathways Drawn from Kinetic and Probe Molecules
53(20)
Claudio Minero
Valter Maurino
Davide Vione
3.1 The Photocatalyic Rate
53(7)
3.1.1 Other Kinetic Models
55(2)
3.1.2 Substrate-Mediated Recombination
57(3)
3.2 Surface Speciation
60(5)
3.2.1 Different Commercial Catalysts
60(1)
3.2.2 Surface Manipulation
61(1)
3.2.3 Crystal Faces
62(2)
3.2.4 Surface Traps for Holes
64(1)
3.3 Multisite Kinetic Model
65(3)
3.4 Conclusion
68(5)
References
68(5)
Part II Improving the Photocatalytic Efficacy
73(198)
4 Design and Development of Active Titania and Related Photocatalysts
75(28)
Bunsho Ohtani
4.1 Introduction -- a Thermodynamic Aspect of Photocatalysis
75(2)
4.2 Photocatalytic Activity: Reexamination
77(1)
4.3 Design of Active Photocatalysts
78(1)
4.4 A Conventional Kinetics in Photocatalysis: First-Order Kinetics
79(1)
4.5 A Conventional Kinetics in Photocatalysis: Langmuir--Hinshelwood Mechanism
80(2)
4.6 Topics and Problems Related to Particle Size of Photocatalysts
82(3)
4.7 Recombination of a Photoexcited Electron and a Positive Hole
85(1)
4.8 Evaluation of Crystallinity as a Property Affecting Photocatalytic Activity
86(1)
4.9 Electron Traps as a Possible Candidate of a Recombination Center
87(2)
4.10 Donor Levels -- a Meaning of n-Type Semiconductor
89(1)
4.11 Dependence of Photocatalytic Activities on Physical and Structural Properties
90(6)
4.11.1 Correlation between Physical Properties and Photocatalytic Activities
90(2)
4.11.2 Statistical Analysis of Correlation between Physical Properties and Photocatalytic Activities -- a Trial
92(2)
4.11.3 Common Features of Titania Particles with Higher Photocatalytic Activity
94(1)
4.11.4 Highly Active Mesoscopic Anatase Particles of Polyhedral Shape
95(1)
4.12 Synergetic Effect
96(1)
4.13 Doping
97(1)
4.14 Conclusive Remarks
98(5)
Acknowledgments
99(1)
References
99(4)
5 Modified Photocatalysts
103(42)
Nurit Shaham-Waldmann
Yaron Paz
5.1 Why Modifying?
103(1)
5.2 Forms of Modification
104(2)
5.3 Modified Physicochemical Properties
106(39)
5.3.1 Crystallinity and Phase Stability
106(1)
5.3.2 Surface Morphology, Surface Area, and Adsorption
107(4)
5.3.3 Adsorption of Oxygen
111(1)
5.3.4 Concentration of Surface OH
111(1)
5.3.5 Specificity
112(3)
5.3.5.1 TiO2 Surface Overcoating
115(1)
5.3.5.2 Composites Comprised of TiO2 and Metallic Nanoislands
116(1)
5.3.5.3 Doping with Metal Ions and Oxides
116(1)
5.3.5.4 Utilizing the "Adsorb and Shuttle" Mechanism to Obtain Specificity
117(2)
5.3.5.5 Mesoporous Materials
119(1)
5.3.5.6 Molecular Imprinting
120(2)
5.3.6 Products' Control
122(1)
5.3.6.1 Surface Modification by Molecular Imprinting
123(1)
5.3.6.2 Composites Comprised of TiO2 and Metallic Nanoislands
124(1)
5.3.6.3 Doping with Metal Ions
124(1)
5.3.6.4 Nonmetallic Composite
125(1)
5.3.6.5 TiO2 Morphology and Crystalline Phase
125(1)
5.3.7 Reducing Deactivation
125(1)
5.3.8 Recombination Rates and Charge Separation
126(1)
5.3.8.1 Structure Modification
127(1)
5.3.8.2 Composites--Metal Islands
127(1)
5.3.8.3 Composites Comprising Carbonaceous Materials
128(1)
5.3.8.4 Composites Composed of TiO2 and Nonoxide Semiconductors
128(1)
5.3.8.5 Composites Composed of TiO2 and Other Oxides
129(2)
5.3.8.6 Doping with Metals
131(1)
5.3.8.7 Doping with Nonmetals
132(1)
5.3.9 Visible Light Activity
132(1)
5.3.10 Charging--Discharging
132(1)
5.3.11 Mass Transfer
133(1)
5.3.12 Facilitating Photocatalysis in Deaerated Suspensions
134(1)
Summary
134(1)
References
134(11)
6 Immobilization of a Semiconductor Photocatalyst on Solid Supports: Methods, Materials, and Applications
145(34)
Didier Robert
Valerie Keller
Nicolas Keller
6.1 Introduction
145(2)
6.2 Immobilization Techniques
147(5)
6.3 Supports
152(16)
6.3.1 Packed-Bed Photocatalytic Materials
153(2)
6.3.2 Monolithic Photocatalytic Materials
155(9)
6.3.3 Optical Fibers
164(4)
6.4 Laboratory and Industrial Applications of Supported Photocatalysts
168(3)
6.5 Conclusion
171(8)
References
172(7)
7 Wastewater Treatment Using Highly Functional Immobilized TiO2 Thin-Film Photocatalysts
179(20)
Masaya Matsuoka
Takashi Toyao
Yu Horiuchi
Masato Takeuchi
Masakazu Anpo
7.1 Introduction
179(1)
7.2 Application of a Cascade Falling-Film Photoreactor (CFFP) for the Remediation of Polluted Water and Air under Solar Light Irradiation
180(4)
7.3 Application of TiO2 Thin-Film-Coated Fibers for the Remediation of Polluted Water
184(2)
7.4 Application of TiO2 Thin Film for Photofuel Cells (PFC)
186(1)
7.5 Preparation of Visible-Light-Responsive TiO2 Thin Films and Their Application to the Remediation of Polluted Water
187(8)
7.5.1 Visible-Light-Responsive TiO2 Thin Films Prepared by Cation or Anion Doping
188(2)
7.5.2 Visible-Light-Responsive TiO2 Thin Films Prepared by the Magnetron Sputtering Deposition Method
190(5)
7.6 Conclusions
195(4)
References
195(4)
8 Sensitization of Titania Semiconductor: A Promising Strategy to Utilize Visible Light
199(42)
Zhaohui Wang
Chuncheng Chen
Wanhong Ma
Jincai Zhao
8.1 Introduction
199(1)
8.2 Principle of Photosensitization
200(1)
8.3 Dye Sensitization
201(12)
8.3.1 Fundamentals of Dye Sensitization
202(1)
8.3.1.1 Geometry and Electronic Structure of Interface
202(1)
8.3.1.2 Excited-State Redox Properties of Dyes
203(2)
8.3.1.3 Electron Transfer from Dyes to TiO2
205(3)
8.3.2 Application of Dye Sensitization
208(1)
8.3.2.1 Nonregenerative Dye Sensitization
208(3)
8.3.2.2 Regenerative Dye Sensitization
211(2)
8.4 Polymer Sensitization
213(1)
8.4.1 Carbon Nitride Polymer
213(1)
8.4.2 Conducting Polymers
214(1)
8.5 Surface-Complex-Mediated Sensitization
214(4)
8.5.1 Organic Ligand
215(2)
8.5.2 Inorganic Ligand
217(1)
8.6 Solid Semiconductor/Metal Sensitization
218(8)
8.6.1 Small-Band-Gap Semiconductor
219(1)
8.6.1.1 Basic Concepts
219(1)
8.6.1.2 Category in Terms of Charge Transfer Process
219(3)
8.6.2 Plasmonic Metal
222(1)
8.6.2.1 Basic Concepts
222(2)
8.6.2.2 Proposed Mechanisms
224(1)
8.6.2.3 Critical Parameters
225(1)
8.7 Other Strategies to Make Titania Visible Light Active
226(4)
8.7.1 Band Gap Engineering
226(1)
8.7.1.1 Metal Doping
226(1)
8.7.1.2 Nonmetal Doping
227(1)
8.7.1.3 Codoping
227(1)
8.7.2 Structure/Surface Engineering
228(2)
8.8 Conclusions
230(11)
Acknowledgment
231(1)
References
231(10)
9 Photoelectrocatalysis for Water Purification
241(30)
Rossano-Amadelli
Luca Samiolo
9.1 Introduction
241(1)
9.2 Photoeffects at Semiconductor Interfaces
242(3)
9.3 Water Depollution at Photoelectrodes
245(4)
9.3.1 Morphology and Microstructure
245(2)
9.3.2 Effect of Applied Potential
247(1)
9.3.3 Effect of pH
247(1)
9.3.4 Effect of Oxygen
248(1)
9.3.5 Electrolyte Composition
249(1)
9.4 Photoelectrode Materials
249(6)
9.4.1 Titanium Dioxide
249(1)
9.4.1.1 Cation Doping
250(1)
9.4.1.2 Nonmetal Doping
250(1)
9.4.2 Other Semiconductor Photoelectrodes
251(1)
9.4.2.1 Zinc Oxide and Iron Oxide
251(1)
9.4.2.2 Tungsten Trioxide
251(1)
9.4.2.3 Bismuth Vanadate
251(1)
9.4.3 Coupled Semiconductors
251(2)
9.4.3.1 n--n Heterojunctions
253(1)
9.4.3.2 p--n Heterojunctions
254(1)
9.5 Electrodes Preparation and Reactors
255(1)
9.6 Conclusions
256(15)
References
257(14)
Part III Effects of Photocatalysis on Natural Organic Matter and Bacteria
271(40)
10 Photocatalysis of Natural Organic Matter in Water: Characterization and Treatment Integration
273(22)
Sanly Liu
May Lim
Rose Amal
10.1 Introduction
273(1)
10.2 Monitoring Techniques
274(7)
10.2.1 Total Organic Carbon
275(1)
10.2.2 UV--vis Spectroscopy
275(2)
10.2.3 Fluorescence Spectroscopy
277(1)
10.2.4 Molecular Size Fractionation
278(2)
10.2.5 Resin Fractionation
280(1)
10.2.6 Infrared Spectroscopy
280(1)
10.3 By-products from the Photocatalytic Oxidation of NOM and its Resultant Disinfection By-Products (DBPs)
281(3)
10.4 Hybrid Photocatalysis Technologies for the Treatment of NOM
284(3)
10.5 Conclusions
287(8)
References
289(6)
11 Waterborne Escherichia coli Inactivation by TiO2 Photoassisted Processes: a Brief Overview
295(16)
Julian Andres Rengifo-Herrera
Angela Giovana Rincon
Cesar Pulgarin
11.1 Introduction
295(1)
11.2 Physicochemical Aspects Affecting the Photocatalytic E. coli Inactivation
296(3)
11.2.1 Effect of Bulk Physicochemical Parameters
296(1)
11.2.1.1 Effect of TiO2 Concentration and Light Intensity
296(1)
11.2.1.2 Simultaneous Presence of Anions and Organic Matter
297(1)
11.2.1.3 pH Influence
298(1)
11.2.1.4 Oxygen Concentration
298(1)
11.2.2 Physicochemical Characteristics of TiO2
299(1)
11.3 Using of N-Doped TiO2 in Photocatalytic Inactivation of Waterborne Microorganisms
299(3)
11.4 Biological Aspects
302(1)
11.4.1 Initial Bacterial Concentration
302(1)
11.4.2 Physiological State of Bacteria
302(1)
11.5 Proposed Mechanisms Suggested for Bacteria Abatement by Heterogeneous TiO2 Photocatalysis
303(1)
11.5.1 Effect of UV-A Light Alone and TiO2 in the Dark
303(1)
11.5.2 Cell Inactivation by Irradiated TiO2 Nanoparticles
304(1)
11.6 Conclusion
304(7)
References
305(6)
Part IV Modeling. Reactors. Pilot plants
311(88)
12 Photocatalytic Treatment of Water: Irradiance Influences
313(22)
David Ollis
12.1 Introduction
313(1)
12.1.1
Chapter Topics
313(1)
12.1.2 Photon Utilization Efficiency
313(1)
12.2 Reaction Order in Irradiance: Influence of Electron -- Hole Recombination and the High Irradiance Penalty
314(1)
12.3 Langmuir--Hinshelwood (LH) Kinetic Form: Equilibrated Adsorption
315(2)
12.4 Pseudo-Steady-State Analysis: Nonequilibrated Adsorption
317(4)
12.5 Mass Transfer and Diffusion Influences at Steady Conditions
321(2)
12.6 Controlled Periodic Illumination: Attempt to Beat Recombination
323(1)
12.7 Solar-Driven Photocatalysis: Nearly Constant nUV Irradiance
324(2)
12.8 Mechanism of Hydroxyl Radical Attack: Same Irradiance Dependence
326(1)
12.9 Simultaneous Homogeneous and Heterogeneous Photochemistry
327(1)
12.10 Dye-Photosensitized Auto-Oxidation
328(1)
12.11 Interplay between Fluid Residence Times and Irradiance Profiles
329(2)
12.11.1 Batch Reactors
329(1)
12.11.2 Flow Reactors
329(2)
12.12 Quantum Yield, Photonic Efficiency, and Electrical Energy per Order
331(1)
12.13 Conclusions
332(3)
References
332(3)
13 A Methodology for Modeling Slurry Photocatalytic Reactors for Degradation of an Organic Pollutant in Water
335(26)
Orlando M. Alfano
Alberto E. Cassano
Rodolfo J. Brandi
Marlia L. Satuf
13.1 Introduction and Scope
335(2)
13.2 Evaluation of the Optical Properties of Aqueous TiO2 Suspensions
337(5)
13.2.1 Spectrophotometric Measurements of TiO2 Suspensions
338(1)
13.2.2 Radiation Field in the Spectrophotometer Sample Cell
339(2)
13.2.3 Parameter Estimation
341(1)
13.3 Radiation Model
342(4)
13.3.1 Experimental Set Up and Procedure
343(1)
13.3.2 Radiation Field Inside the Photoreactor
344(2)
13.4 Quantum Efficiencies of 4-Chlorophenol Photocatalytic Degradation
346(2)
13.4.1 Calculation of the Quantum Efficiency
346(1)
13.4.2 Experimental Results
347(1)
13.5 Kinetic Modeling of the Pollutant Photocatalytic Degradation
348(4)
13.5.1 Mass Balances
348(1)
13.5.2 Kinetic Model
349(1)
13.5.3 Kinetic Parameters Estimation
350(2)
13.6 Bench-Scale Slurry Photocatalytic Reactor for Degradation of 4-Chlorophenol
352(4)
13.6.1 Experiments
352(1)
13.6.2 Reactor Model
352(1)
13.6.2.1 Radiation Model
352(2)
13.6.2.2 Reaction Rates
354(1)
13.6.2.3 Mass Balances in the Tank and Reactor
354(1)
13.6.3 Results
355(1)
13.7 Conclusions
356(5)
Acknowledgments
357(1)
References
357(4)
14 Design and Optimization of Photocatalytic Water Purification Reactors
361(16)
Tsuyoshi Ochiai
Akira Fujishima
14.1 Introduction
361(2)
14.1.1 Market Transition of Industries Related to Photocatalysis
361(1)
14.1.2 Historical Overview
361(2)
14.2 Catalyst Immobilization Strategy
363(3)
14.2.1 Aqueous Suspension
363(2)
14.2.2 Immobilization of TiO2 Particles onto Solid Supports
365(1)
14.3 Synergistic Effects of Photocatalysis and Other Methods
366(3)
14.3.1 Deposition of Metallic Nanoparticles onto TiO2 Surface for Disinfection
366(1)
14.3.2 Combination with Advanced Oxidation Processes (AOPs)
367(2)
14.4 Effective Design of Photocatalytic Reactor System
369(3)
14.4.1 Two Main Strategies for the Effective Reactors
369(2)
14.4.2 Design of Total System
371(1)
14.5 Future Directions and Concluding Remarks
372(5)
Acknowledgments
373(1)
References
373(4)
15 Solar Photocatalytic Pilot Plants: Commercially Available Reactors
377(22)
Sixto Malato
Pilar Fernandez-Ibanez
Maneil Ignacio Maldonado
Isabel Oller
Maria Inmaculada Polo-Lopez
15.1 Introduction
377(2)
15.2 Compound Parabolic Concentrators
379(3)
15.3 Technical Issues: Reflective Surface and Photoreactor
382(4)
15.4 Suspended or Supported Photocatalyst
386(2)
15.5 Solar Photocatalytic Treatment Plants
388(2)
15.6 Specific Issues Related with Solar Photocatalytic Disinfection
390(4)
15.7 Conclusions
394(5)
Acknowledgments
395(1)
References
395(4)
Index 399
Professor Pierre Pichat is first class Research Director at the French National Center for Scientific Research (CNRS) in Lyon. He has been active in heterogeneous photocatalysis for more than three decades, and founded the laboratory of "Photocatalyse, Catalyse et Environment" at the Ecole Centrale de Lyon. He has published a great number of research papers and several review articles dealing with photocatalytic reactions and materials. At the "9th International Conference on TiO2 photocatalysis: fundamentals and applications", held in 2004 in San Diego, he received an Appreciation Award acknowledging his pioneering contributions; this award has been conferred to only three scientists in 20 years.