Atjaunināt sīkdatņu piekrišanu

E-grāmata: Photocatalysts in Advanced Oxidation Processes for Wastewater Treatment

Edited by , Edited by , Edited by
  • Formāts: EPUB+DRM
  • Izdošanas datums: 19-May-2020
  • Izdevniecība: Wiley-Scrivener
  • Valoda: eng
  • ISBN-13: 9781119631446
  • Formāts - EPUB+DRM
  • Cena: 217,65 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: EPUB+DRM
  • Izdošanas datums: 19-May-2020
  • Izdevniecība: Wiley-Scrivener
  • Valoda: eng
  • ISBN-13: 9781119631446

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Photocatalysts in Advanced Oxidation Processes for Wastewater Treatment comprehensively covers a range of topics aiming to promote the implementation of photocatalysis at large scale through provision of facile and green methods for catalysts synthesis and elucidation of pollutants degradation mechanisms. This book is divided into two main parts namely “Synthesis of effective photocatalysts” (Part I) and “Mechanisms of the photocatalytic degradation of various pollutants” (Part II). The first part focuses on the exploration of various strategies to synthesize sustainable and effective photocatalysts.  The second part of the book provides an insights into the photocatalytic degradation mechanisms and pathways under ultraviolet and visible light irradiation, as well as the challenges faced by this technology and its future prospects.
Preface xi
Part 1 Synthesis of Effective Photocatalysts
1(92)
1 Biogenic Synthesis of Metal Oxide Nanoparticle Semiconductors for Wastewater Treatment
3(30)
Nkgaestsi M. Ngoepe
Mpitloane J. Hato
Kwena D. Modibane
Nomso C. Hintsho-Mbita
1.1 Introduction
4(2)
1.2 Classifications of Semiconductor Nanostructured Materials
6(3)
1.2.1 Zinc Oxide (ZnO) Nanostructures
6(1)
1.2.2 Titanium Dioxide Nanostructures
7(2)
1.3 Biological Synthesis of ZnO and TiO2 Nanostructures
9(8)
1.3.1 Synthesis of ZnO and TiO2 Using Bacteria
10(3)
1.3.2 Preparation of ZnO and TiO2 from Plants
13(4)
1.4 Photocatalytic Degradation of Dyes
17(5)
1.5 Challenges of Photocatalysis
22(1)
1.6 Conclusions: Future and Scope
23(10)
Acknowledgments
24(1)
References
24(9)
2 Wastewater Treatment: Synthesis of Effective Photocatalysts Through Novel Approaches
33(32)
Tahira Qureshi
Monireh Bakhshpour
Kemal Cetin
Aykut ArifTopcu
Adil Denizli
List of Abbreviations
34(1)
2.1 Introduction
35(9)
2.1.1 Miscellaneous Methods in Wastewater Treatment
36(2)
2.1.2 Homogeneous Photo - Fenton for Wastewater Treatment
38(4)
2.1.3 Heterogeneous Photocatalysis Processes for Wastewater Treatment
42(2)
2.2 Synthesis of Photocatalytic Materials
44(9)
2.2.1 Sol-Gel Synthesis
44(2)
2.2.2 Hydrothermal Synthesis Process
46(1)
2.2.3 Solvothermal Synthesis Process
47(1)
2.2.4 Direct Oxidation Synthesis
48(1)
2.2.5 Sonochemical Synthesis Method
48(1)
2.2.6 Chemical Vapor Deposition Synthesis Method
49(1)
2.2.7 Physical Vapor Deposition
50(1)
2.2.8 Microwave Synthesis Process
51(1)
2.2.9 Electrochemical Deposition Synthesis Process
52(1)
2.3 Support Materials for Photocatalysis
53(3)
2.3.1 Zeolites
53(1)
2.3.2 Clays
54(1)
2.3.3 Carbon Nanotubes (CNTs)
54(1)
2.3.4 Additional Supports
55(1)
2.4 Life Cycle Assessment of Photocatalytic Water Treatment Processes
56(1)
2.5 Summary
57(8)
References
58(7)
3 Metal-Organic Frameworks as Possible Candidates for Photocatalytic Degradation of Dyes in Wastewater
65(28)
Thabiso C. Maponya
Mpitloane J. Hato
Kwetta D. Modibane
Katlego Makgopa
3.1 Introduction
66(1)
3.2 Wastewater Treatment Methods
67(2)
3.3 Photocatalysis
69(2)
3.3.1 Background
69(1)
3.3.2 Photocatalysts for Wastewater Treatment
69(2)
3.4 Metal-Organic Frameworks
71(12)
3.4.1 History and Discovery of MOFs
72(1)
3.4.2 Structure of Metal-Organic Frameworks
72(3)
3.4.3 Preparation of Metal-Organic Frameworks
75(1)
3.4.3.1 Hydro/Solvothermal Synthesis
75(1)
3.4.3.2 Microwave-Assisted Synthesis
76(1)
3.4.3.3 Mechanochemical Process
77(1)
3.4.3.4 Post Synthesis
78(1)
3.4.5 Applications
79(1)
3.4.6 MOFs for Photocatalytic Degradation
79(4)
3.5 Conclusions
83(10)
Acknowledgments
83(1)
References
84(9)
Part 2 Mechanisms of the Photocatalytic Degradation of Various Pollutants
93(196)
4 Photocatalytic Degradation of Toxic Pesticides: Mechanistic Insights
95(44)
Akeem Adeyemi Oladipo
Mustafa Gazi
Ayodeji Olugbenga Ifebajo
Adewale Sulaiman Oladipo
Edith Odinaka Ahaka
4.1 Introduction
96(3)
4.1.1 Global Production, Consumption, and Distribution of Pesticides
97(1)
4.1.2 Pesticide Remediation Technologies
98(1)
4.2 Advanced Oxidation Processes
99(4)
4.2.1 Heterogeneous Advanced Oxidation Processes
101(1)
4.2.2 Homogeneous Advanced Oxidation Processes
102(1)
4.3 Photobased Treatment Approaches for Pesticides
103(3)
4.3.1 Photolytic Degradation of Pesticides
104(2)
4.3.2 Photolytic Degradation of Pesticides Combined With Oxidants
106(1)
4.4 Photocatalytic Degradation of Pesticides
106(22)
4.4.1 Metal Oxide Semiconductors for Photocatalytic Degradation of Pesticides
114(10)
4.4.2 Photocatalytic Degradation of Pesticides by Metal-Organic Frameworks
124(4)
4.5 Mechanistic Insights Into Photocatalytic Degradation of Pesticides
128(3)
4.6 Conclusions and Future Directions
131(8)
References
132(7)
5 Sustainable Photo- and Bio-Catalysts for Wastewater Treatment
139(28)
Nour Sh. El-Gendy
Hussein N. Nassar
5.1 Introduction
139(2)
5.2 Natural Apatite and Its Applications
141(1)
5.3 Natural Apatite as a Photo-Bio-Catalyst for Wastewater Treatment
141(16)
5.3.1 Photodegradation by Pure Apatite
142(1)
5.3.2 Photodegradation by Titania/Apatite Nanocomposite
143(4)
5.3.3 Photodegradation by Zinicate/Apatite Nanocomposite
147(5)
5.3.4 Photodegradation by Other Metal/Apatite Nanocomposite
152(5)
5.4 Photodegradation of Pharmaceutical Pollutants
157(2)
5.5 Challenges and Opportunities
159(8)
References
160(7)
6 Recent Advancement in Visible-Light-Responsive Photocatalysts in Heterogeneous Photocatalytic Water Treatment Technology
167(30)
Sadanand Pandey
Kotesh Kumar Mandari
Joonwoo Kim
Misook Kang
Elvis Fosso-Kankeu
6.1 Introduction
168(18)
6.1.1 Technologies for Dye Removal From Contaminated Water
170(1)
6.1.2 Photocatalysis
171(1)
6.1.3 General Mechanism of Photocatalysis
172(5)
6.1.4 Parameters Affecting the Photocatalytic Degradation of Dyes
177(1)
6.1.4.1 Influence of pH on Photocatalytic Degradation of Dyes in Wastewaters
177(4)
6.1.4.2 Crystal Composition and Catalyst Type
181(2)
6.1.4.3 Pollutant Type and Concentration
183(1)
6.1.4.4 Influence of Catalyst Loading
184(2)
6.2 Conclusion and Future Research
186(11)
Funding
187(1)
Acknowledgments
187(1)
References
187(10)
7 Degradation Mechanism of Organic Dyes by Effective Transition Metal Oxide
197(32)
Barkha Rani
G. Thamizharasan
Arpan Kumar Nayak
Niroj Kumar Sahu
7.1 Introduction
198(1)
7.2 Types of Dyes and Their Sources
198(1)
7.3 Environmental Hazards
199(1)
7.4 Conventional Dye Degradation Process
200(2)
7.4.1 Coagulation/Flocculation Process
201(1)
7.4.2 Membrane Separation Process
201(1)
7.4.3 Ion Exchange Process
202(1)
7.4.4 Adsorption on Activated Carbon
202(1)
7.4.5 Advance Oxidation Process
202(1)
7.5 Mechanism of Photocatalytic Dye Degradation
202(5)
7.5.1 Adsorption Process
203(1)
7.5.1.1 Langmuir Isotherm
203(1)
7.5.1.2 Freundlich Isotherm
204(1)
7.5.1.3 Temkin Isotherm
204(1)
7.5.1 A Dubinin Radushkevich Isotherm
205(1)
7.5.2 Photocatalytic Dye Degradation
206(1)
7.6 Nanomaterial Aspect for Dye Degradation Process
207(1)
7.7 Transition Metal Oxide-Based Nanomaterials for Dye Degradation
208(11)
7.7.1 Co-Precipitation Process
210(1)
7.7.2 Hydrothermal/Solvothermal Technique
211(1)
7.7.3 Thermal Decomposition Process
211(8)
7.8 Challenges and Future Scope
219(1)
7.9 Conclusions
220(9)
References
221(8)
8 Factors Influencing the Photocatalytic Activity of Photocatalysts in Wastewater Treatment
229(42)
Rashi Gusain
Neeraj Kumar
Suprakas Sinha Ray
8.1 Introduction
230(2)
8.2 Photocatalysis in Water Treatment
232(1)
8.3 General Mechanism of Photocatalysis
233(2)
8.4 Parameters Influencing Photocatalysis
235(22)
8.4.1 Amount of Catalyst
235(1)
8.4.2 Amount of Pollutant
235(1)
8.4.3 Effect of pH
236(1)
8.4.4 Effect of Oxidants
237(2)
8.4.4.1 Effect of H2O2
239(1)
8.4.4.2 Effect of KBrO3
240(1)
8.4.4.3 Effect of (NH4)2S208 and K2S208
240(1)
8.4.5 Effect of Temperature
241(3)
8.4.6 Effect of Reaction Light Intensity
244(1)
8.4.7 Effect of Doping
245(2)
8.4.7.1 Noble Metal Doping
247(1)
8.4.7.2 Metal Doping
248(2)
8.4.7.3 Rare Earth Metal Doping
250(1)
8.4.7.4 Non-Metallic Doping
251(2)
8.4.7.5 Co-Doping
253(1)
8.4.7.6 Self-Doping
253(1)
8.4.8 Effect of Inorganic Ions
254(1)
8.4.9 Effect of Size, Morphology, and Surface Area
255(2)
8.5 Summary
257(14)
Acknowledgment
258(1)
References
258(13)
9 Removal of Free Cyanide by a Green Photocatalyst ZnO Nanoparticle Synthesized via Eucalyptus globulus Leaves
271(18)
L.C. Razanamahandry
J. Sackey
C.M. Furqan
S.K.O. Ntwampe
E. Fosso-Kankeu
E. Manikandan
M. Maaza
List of Abbreviations
272(1)
9.1 Introduction
272(2)
9.2 Materials and Methods
274(2)
9.2.1 Eucalyptus globulus Leaves Extract Preparation
274(1)
9.2.2 Zinc Oxide Nanoparticle Synthesis
274(1)
9.2.3 Zinc Oxide Characterizations
274(1)
9.2.4 Free Cyanide Removal
275(1)
9.3 Results and Discussion
276(8)
9.3.1 Zinc Oxide Nanoparticle Characteristics
276(5)
9.3.2 Free Cyanide Adsorption
281(3)
9.4 Conclusion
284(5)
References
285(4)
Index 289
Elvis Fosso-Kankeu has a doctorate degree from the University of Johannesburg in South Africa. He is currently a Full Professor in the School of Chemical and Mineral Engineering at the North-West University in South Africa. His research focuses on the prediction of pollutants dispersion from industrial areas, and on the development of effective and sustainable methods for the removal of inorganic and organic pollutants from polluted water. He has published more than 200 journal articles, books, book chapters and conference proceeding papers.

Sadanand Pandey is a Research Professor in Yeungnam University, South Korea. He received his PhD degree in polymer chemistry in 2009, India. In the period 2011–2013, he worked in the Materials Research Centre (MRC) of the Indian Institute of Science. His 70+ high impact international publications have received more than 2000 google scholar citations in the past 5 years. He is leading a research project focused on the design of new nanostructured inorganic and hybrid organic–inorganic materials and their application as adsorbents, catalysts and gas sensor.

Suprakas Sinha Ray is a chief researcher in polymer nanocomposites at the CSIR, India with a PhD in physical chemistry from the University of Calcutta (2001) and director of the DST-CSIR National Centre for Nanostructured Materials. Ray's current research focuses on polymer-based advanced nanostructured materials and their applications. Prof. Ray is the author of 4 books, co-edited 3 books, 30 book chapters on various aspects of polymer-based nano-structured materials & their applications, and author and co-author of more than 300 articles in high-impact international journals, 30 articles in national and international conference proceedings. He also has 6 patents and 7 new demonstrated technologies (commercialized) shared with colleagues, collaborators and industrial partners.