Atjaunināt sīkdatņu piekrišanu

Photoemission from Optoelectronic Materials and their Nanostructures 2009 [Hardback]

  • Formāts: Hardback, 329 pages, height x width: 235x155 mm, weight: 1480 g, 209 Illustrations, black and white; XIX, 329 p. 209 illus., 1 Hardback
  • Sērija : Nanostructure Science and Technology
  • Izdošanas datums: 01-Jul-2009
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 0387786058
  • ISBN-13: 9780387786056
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 180,78 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 212,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 329 pages, height x width: 235x155 mm, weight: 1480 g, 209 Illustrations, black and white; XIX, 329 p. 209 illus., 1 Hardback
  • Sērija : Nanostructure Science and Technology
  • Izdošanas datums: 01-Jul-2009
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 0387786058
  • ISBN-13: 9780387786056
Citas grāmatas par šo tēmu:

This monograph investigates photoemission from optoelectronic materials and their nanostructures. It contains open-ended research problems which form an integral part of the text and are useful for graduate courses as well as aspiring Ph.D.’s and researchers.



In recent years, with the advent of fine line lithographical methods, molecular beam epitaxy, organometallic vapour phase epitaxy and other experimental techniques, low dimensional structures having quantum confinement in one, two and three dimensions (such as ultrathin films, inversion layers, accumulation layers, quantum well superlattices, quantum well wires, quantum wires superlattices, magneto-size quantizations, and quantum dots) have attracted much attention not only for their potential in uncovering new phenomena in nanoscience and technology, but also for their interesting applications in the areas of quantum effect devices. In ultrathin films, the restriction of the motion of the carriers in the direction normal to the film leads to the quantum size effect and such systems find extensive applications in quantum well lasers, field effect transistors, high speed digital networks and also in other quantum effect devices. In quantum well wires, the carriers are quantized in two transverse directions and only one-dimensional motion of the carriers is allowed.
1 Fundamentals of Photoemission from Wide Gap Materials
1
1.1 Introduction
1
1.2 Theoretical Background
4
1.2.1 Photoemission from Bulk Semiconductors
4
1.2.2 Photoemission Under Magnetic Quantization
9
1.2.3 Photoemission in the Presence of Cross Fields
14
1.2.4 Photoemission from Quantum Wells in Ultrathin Films of Wide Gap Materials
17
1.2.5 Photoemission from Quantum Well Wires of Wide Gap Materials
20
1.2.6 Photoemission from Quantum Dots of Wide Gap Materials
22
1.2.7 Photoemission Under Magneto-Size Quantization (MSQ)
24
1.3 Results and Discussions
25
References
34
2 Fundamentals of Photoemission from Quantum Wells in Ultrathin Films and Quantum Well Wires of Various Nonparabolic Materials
37
2.1 Introduction
37
2.2 Theoretical Background
39
2.2.1 Photoemission from Nonlinear Optical Materials
39
2.2.2 Photoemission from III–V Materials
43
2.2.3 Photoemission from II–VI Compounds
46
2.2.4 Photoemission from n-Gallium Phosphide
48
2.2.5 Photoemission from n-Germanium
50
2.2.6 Photoemission from Platinum Antimonide
56
2.2.7 Photoemission from Stressed Materials
59
2.2.8 Photoemission from Bismuth
62
2.2.9 Photoemission from (n, n) and (n, 0) Carbon Nanotubes
72
2.3 Results and Discussions
73
References
104
3 Fundamentals of Photoemission from Quantum Dots of Various Nonparabolic Materials
107
3.1 Introduction
107
3.2 Theoretical Background
109
3.2.1 Photoemission from Nonlinear Optical Materials
109
3.2.2 Photoemission from III–V Materials
110
3.2.3 Photoemission from II–VI Materials
120
3.2.4 Photoemission from n-Gallium Phosphide
121
3.2.5 Photoemission from n-Germanium
122
3.2.6 Photoemission from Tellurium
124
3.2.7 Photoemission from Graphite
126
3.2.8 Photoemission from Platinum Antimonide
128
3.2.9 Photoemission from Zero-Gap Materials
129
3.2.10 Photoemission from Lead Germanium Telluride
131
3.2.11 Photoemission from Gallium Antimonide
132
3.2.12 Photoemission from Stressed Materials
137
3.2.13 Photoemission from Bismuth
138
3.2.14 Photoemission from IV–VI Materials
142
3.2.15 Photoemission from II–V Materials
146
3.2.16 Photoemission from Zinc and Cadmium Diphosphides
147
3.2.17 Photoemission from Bismuth Telluride
149
3.2.18 Photoemission from Quantum Dots of Antimony
150
3.3 Results and Discussions
152
References
170
4 Photoemission from Quantum Confined Semiconductor Superlattices
173
4.1 Introduction
173
4.2 Theoretical Background
174
4.2.1 Magneto-photoemission from III–V Quantum Well Superlattices with Graded Interfaces
174
4.2.2 Magneto-Photoemission from II–VI Quantum Well Superlattices with Graded Interfaces
179
4.2.3 Magneto-Photoemission from IV–VI Quantum Well Superlattices with Graded Interfaces
181
4.2.4 Magneto-Photoemission from HgTe/CdTe Quantum Well Superlattices with Graded Interfaces
185
4.2.5 Magneto-Photoemission from III–V Quantum Well Effective Mass Superlattices
186
4.2.6 Magneto-Photoemission from II–VI Quantum Well Effective Mass Superlattices
188
4.2.7 Magneto-Photoemission from IV–VI Quantum Well Effective Mass Superlattices
191
4.2.8 Magneto-Photoemission from HgTe/CdTe Quantum Well Effective Mass Superlattices
193
4.2.9 Photoemission from III—V Quantum Dot Superlattices with Graded Interfaces
194
4.2.10 Photoemission from II—VI Quantum Dot Superlattices with Graded Interfaces
197
4.2.11 Photoemission from IV—VI Quantum Dot Superlattices with Graded Interfaces
198
4.2.12 Photoemission from HgTe/CdTe Quantum Dot Superlattices with Graded Interfaces
201
4.2.13 Photoemission from III—V Quantum Dot Effective Mass Superlattices
202
4.2.14 Photoemission from II—VI Quantum Dot Effective Mass Superlattices
203
4.2.15 Photoemission from IV—VI Quantum Dot Effective Mass Superlattices
204
4.2.16 Photoemission from HgTe/CdTe Quantum Dot Effective Mass Superlattices
205
4.3 Results and Discussions
206
References
217
5 Photoemission from Bulk Optoelectronic Materials
219
5.1 Introduction
219
5.2 Theoretical Background
220
5.3 Results and Discussions
226
5.4 Open Research Problems
234
References
235
6 Photoemission under Quantizing Magnetic Field from Optoelectronic Materials
237
6.1 Introduction
237
6.2 Theoretical Background
237
6.3 Results and Discussions
239
6.4 Open Research Problems
244
References
245
7 Photoemission from Quantum Wells in Ultrathin Films, Quantum Wires, and Dots of Optoelectronic Materials
247
7.1 Introduction
247
7.2 Theoretical Background
247
7.2.1 Photoemission from Quantum Wells in Ultrathin Films of Optoelectronic Materials
247
7.2.2 Photoemission from Quantum Well Wires of Optoelectronic Materials
250
7.2.3 Photoemission from Quantum Dots of Optoelectronic Materials
251
7.3 Results and Discussions
253
7.4 Open Research Problems
265
Reference
269
8 Photoemission from Quantum Confined Effective Mass Superlattices of Optoelectronic Materials
271
8.1 Introduction
271
8.2 Theoretical Background
271
8.2.1 Magneto-Photoemission from Quantum Well Effective Mass Superlattices
271
8.2.2 Photoemission from Effective Mass Quantum Well Wire Superlattices
275
8.2.3 Photoemission from Quantum Dots of Effective Mass Superlattices
276
8.2.4 Magneto-Photoemission from Effective Mass Superlattices
277
8.3 Results and Discussions
278
8.4 Open Research Problems
290
Reference
291
9 Photoemission from Quantum Confined Superlattices of Optoelectronic Materials with Graded Interfaces
293
9.1 Introduction
293
9.2 Theoretical Background
293
9.2.1 Magneto Photoemission from Quantum Well Superlattices
293
9.2.2 Photoemission from Quantum Well Wire Superlattices
298
9.2.3 Photoemission from Quantum Dot Superlattices
300
9.2.4 Magneto-Photoemission from Superlattices of III-V Optoelectronic Materials
301
9.3 Results and Discussions
301
9.4 Open Research Problems
313
Reference
314
10 Review of Experimental Results 315
10.1 Experimental Works
315
10.2 Open Research Problem
316
References
316
11 Conclusion and Future Research 317
11.1 Open Research Problems
317
Appendix A 321
References
324
Subject Index 327
Materials Index 329