Atjaunināt sīkdatņu piekrišanu

E-grāmata: Photothermal Spectroscopy Methods

Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 193,85 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Covers the advantages of using photothermal spectroscopy over conventional absorption spectroscopy, including facilitating extremely sensitive measurements and non-destructive analysis

This unique guide to the application and theory of photothermal spectroscopy has been newly revised and updated to include new methods and applications and expands on applications to chemical analysis and material science. The book covers the subject from the ground up, lists all practical considerations needed to obtain accurate results, and provides a working knowledge of the various methods in use.

Photothermal Spectroscopy Methods, Second Edition includes the latest methods of solid state and materials analysis, and describes new chemical analysis procedures and apparatuses in the analytical chemistry sections. It offers a detailed look at the optics, physical principles of heat transfer, and signal analysis. Information in the temperature change and optical elements in homogeneous samples and photothermal spectroscopy in homogeneous samples has been updated with a better description of diffraction effects and calculations. Chapters on analytical measurement and data processing and analytical applications are also updated and include new information on modern applications and photothermal microscopy. Finally, the Photothermal Spectroscopy of Heterogeneous Sample chapter has been expanded to incorporate new methods for materials analysis.

  • New edition updates and expands on applications to chemical analysis and materials science, including new methods of solid state and materials analysis
  • Includes new chemical analysis procedures and apparatuses
  • Provides an unmatched resource that develops a consistent mathematical basis for signal description, consolidates previous theories, and provides invaluable insight into laser technology

Photothermal Spectroscopy Methods, Second Edition will appeal to researchers from both academia and industry (graduate students, postdocs, research scientists, and professors) in the general field of analytical chemistry, optics, and materials science, and researchers and engineers at scientific instrument developers in fields related to photonics and spectroscopy.

About the Authors xiii
Preface xv
Acknowledgments xix
1 Introduction
1(56)
1.1 Photothermal Spectroscopy
1(2)
1.2 Basic Processes in Photothermal Spectroscopy
3(2)
1.3 Photothermal Spectroscopy Methods
5(4)
1.4 Application of Photothermal Spectroscopy
9(1)
1.5 Illustrative History and Classification of Photothermal Spectroscopy Methods
10(38)
1.5.1 Nature of the Photothermal Effect
10(1)
1.5.2 Photoacoustic Spectroscopy
11(3)
1.5.3 Single-Beam Photothermal Lens Spectroscopy
14(4)
1.5.4 Photothermal Z-scan Technique
18(2)
1.5.5 Photothermal Interferometry
20(5)
1.5.6 Two-Beam Photothermal Lens Spectroscopy
25(2)
1.5.7 Photothermal Lens Microscopy
27(4)
1.5.8 Photothermal Deflection, Refraction, and Diffraction
31(7)
1.5.9 Photothermal Mirror
38(3)
1.5.10 Photothermal IR Microspectroscopy
41(3)
1.5.11 Photothermal Radiometry
44(3)
1.5.12 Historic Summary
47(1)
1.6 Some Important Features of Photothermal Spectroscopy
48(2)
References
50(7)
2 Absorption, Energy Transfer, and Excited State Relaxation
57(50)
2.1 Factors Affecting Optical Absorption
57(6)
2.2 Optical Excitation
63(9)
2.2.1 Kinetic Treatment of Optical Transitions
63(6)
2.2.2 Nonradiative Transitions
69(3)
2.3 Excited State Relaxation
72(13)
2.3.1 Rotational and Vibrational Relaxation
73(5)
2.3.2 Electronic States and Transitions
78(2)
2.3.3 Electronic State Relaxation
80(5)
2.4 Relaxation Kinetics
85(3)
2.5 Nonlinear Absorption
88(13)
2.5.1 Multiphoton Absorption
90(1)
2.5.2 Optical Saturation of Two-Level Transitions
91(2)
2.5.3 Optical Bleaching
93(2)
2.5.4 Response Times During Optical Bleaching
95(1)
2.5.5 Optical Bleaching of Organic Dyes
96(2)
2.5.6 Relaxation for Impulse Excitation
98(1)
2.5.7 Multiple Photon Absorption
99(2)
2.6 Absorbed Energy
101(3)
References
104(3)
3 Hydrodynamic Relaxation: Heat Transfer and Acoustics
107(48)
3.1 Local Equilibrium
107(1)
3.2 Thermodynamic and Optical Parameters in Photothermal Spectroscopy
108(3)
3.2.1 Enthalpy and Temperature
108(3)
3.2.2 Energy and Dynamic Change
111(1)
3.3 Conservation Equations
111(5)
3.4 Hydrodynamic Equations
116(2)
3.5 Hydrodynamic Response to Photothermal Excitation
118(8)
3.5.1 Solving the Hydrodynamic Equations
119(2)
3.5.2 Thermal Diffusion Mode
121(1)
3.5.3 Fourier-Laplace Solutions for the Thermal Diffusion Equation
122(2)
3.5.4 Propagating Mode
124(1)
3.5.5 Summary of Hydrodynamic Mode Solutions
125(1)
3.6 Density Response to Impulse Excitation
126(12)
3.6.1 One-Dimensional Case
127(2)
3.6.2 Two-Dimensional Cylindrically Symmetric Example
129(8)
3.6.3 Coupled Solutions
137(1)
3.7 Solutions Including Mass Diffusion
138(5)
3.8 Effect of Hydrodynamic Relaxation on Temperature
143(2)
3.9 Thermodynamic Fluctuation
145(1)
3.10 Noise Equivalent Density Fluctuation
146(4)
3.11 Summary
150(1)
Appendix 3.A Thermodynamic Parameter Calculation
150(1)
Appendix 3.B Propagating Mode Impulse Response for Polar Coordinates in Infinite Media
151(2)
References
153(2)
4 Temperature Change, Thermoelastic Deformation, and Optical Elements in Homogeneous Samples
155(64)
4.1 Temperature Change from Gaussian Excitation Sources
156(18)
4.1.1 Thermal Diffusion Approximation
156(1)
4.1.2 Gaussian Laser Excitation of Optically Thin Samples
157(2)
4.1.3 Short Pulse Laser Excitation
159(1)
4.1.4 Continuous Laser Excitation
160(1)
4.1.4.1 Laser Heating
160(1)
4.1.4.2 On-axis Temperature Change
161(1)
4.1.4.3 Post-excitation Cooling
162(3)
4.1.5 Chopped Laser Excitation
165(2)
4.1.6 On-axis Temperature Change for Periodic Excitation
167(1)
4.1.7 Gaussian Laser Excitation of Absorbing and Opaque Samples
168(1)
4.1.7.1 Short Pulse Laser Excitation
169(1)
4.1.7.2 Continuous Laser Excitation
170(1)
4.1.8 Thermal Gratings
170(4)
4.2 Thermodynamic Parameters
174(6)
4.2.1 Thermodynamic Parameters Affecting Temperature
174(4)
4.2.2 Convection Heat Transfer
178(2)
4.3 Thermoelastic Displacement
180(2)
4.3.1 Continuous Laser Excitation
181(1)
4.3.2 Short Pulse Laser Excitation
182(1)
4.4 Optical Elements
182(12)
4.4.1 Phase Shift and Optical Path Length Difference
184(1)
4.4.2 Phase Shift and Optical Path Length Difference Under Thermoelastic Deformation
185(4)
4.4.3 Deflection Angle
189(1)
4.4.4 Thermal Lens Focal Length
190(3)
4.4.5 Grating Strength
193(1)
4.5 Temperature-dependent Refractive Index Change
194(10)
4.5.1 Density and Temperature Dependence of Refractive Index
195(4)
4.5.2 Population Dependence on Refractive Index
199(1)
4.5.3 Soret Effect
200(3)
4.5.4 Other Factors Affecting Refractive Index
203(1)
4.6 Temperature Change and Thermoelastic Displacement from Top-hat Excitation Sources
204(2)
4.6.1 Temperature Change from Top-hat Excitation Sources
204(1)
4.6.2 Thermoelastic Displacement from Top-hat Excitation Sources
205(1)
4.7 Limitations
206(9)
4.7.1 Excitation Beam Waist Radius Changes
207(1)
4.7.2 Effects of Scattering and Optically Thick Samples
208(2)
4.7.3 Finite Extent Sample Effects
210(1)
4.7.4 Accounting for Finite Cell Radius
211(4)
References
215(4)
5 Photothermal Spectroscopy in Homogeneous Samples
219(66)
5.1 Photothermal Interferometry
219(5)
5.2 Photothermal Deflection
224(15)
5.2.1 Deflection Angle for Pulsed Laser Excitation
224(1)
5.2.1.1 Collinear Probe Geometry
224(2)
5.2.1.2 Crossed-beam Probe Geometry
226(1)
5.2.2 Deflection Angle for Continuous and Chopped Laser Excitation
227(1)
5.2.2.1 Continuous Excitation with Parallel Probe Geometry
227(3)
5.2.2.2 Continuous Excitation with Crossed-probe Geometry
230(1)
5.2.2.3 Chopped Excitation with Parallel Probe
230(1)
5.2.3 Deflection Angle Detection
231(1)
5.2.3.1 Probe Laser Beam Waist Effect
231(3)
5.2.3.2 Straightedge Apparatus
234(1)
5.2.3.3 Position Sensing Detectors
235(1)
5.2.3.4 Other Methods to Detect Deflection Angle
236(2)
5.2.3.5 Differential Deflection Angle
238(1)
5.3 Thermal Lens Focal Length
239(9)
5.3.1 Pulsed Excitation Thermal Lens Focal Length
239(1)
5.3.1.1 Time-dependent Focal Length
239(1)
5.3.1.2 Sample Path Length Limitations
240(2)
5.3.1.3 Crossed-beam Arrangement
242(1)
5.3.2 Continuous and Chopped Excitation Thermal Lens Focal Length
243(1)
5.3.2.1 Continuous Excitation
243(1)
5.3.2.2 Sample Path Length Limitations
243(1)
5.3.2.3 Crossed-beam Geometry
244(1)
5.3.2.4 Chopped Excitation
245(1)
5.3.3 Focal Length for Periodic Excitation
245(3)
5.4 Detecting the Thermal Lens
248(10)
5.4.1 Signal for Symmetric Lens
248(2)
5.4.2 Signal for Different x and y Focal Lengths
250(3)
5.4.3 Lock-in Amplifier or Pulse Height Detected Signal
253(1)
5.4.4 Signal Development with Large Apertures
254(1)
5.4.5 Signal Development Based on Image Analysis and Other Optical Filters
255(3)
5.5 Types of Photothermal Lens Apparatuses
258(9)
5.5.1 Single-laser Apparatus
258(2)
5.5.2 Differential Single-laser Apparatus
260(1)
5.5.3 Two-laser Apparatus
261(6)
5.6 Two-laser Photothermal Lens Spectroscopy
267(2)
5.6.1 Excitation Wavelength Dependence in Two-laser Photothermal Spectroscopy
268(1)
5.7 Differential Two-laser Apparatuses
269(2)
5.8 Diffraction Effects
271(12)
5.8.1 Probe Laser Diffraction Effects for Pulsed Excitation
272(6)
5.8.2 Probe Laser Diffraction Effects for Continuous Excitation
278(3)
5.8.3 Diffraction Effects for Single-laser Photothermal Lens
281(1)
5.8.4 Effect of Diffraction on the Thermal Lens Enhancement Factor
281(2)
References
283(2)
6 Analytical Measurement and Data Processing Considerations
285(62)
6.1 Sensitivity of Photothermal Spectroscopy
286(20)
6.1.1 Photothermal Lens Enhancement Factors
286(5)
6.1.2 Relative Sensitivity of Photothermal Lens and Deflection Spectroscopies
291(1)
6.1.3 Relative Sensitivity of Photothermal Lens and Photothermal Interferometry Spectroscopies
292(3)
6.1.4 Relating Photothermal Signals to Absorbance and Enhancement
295(1)
6.1.5 Intrinsic Enhancement of Two-Laser Methods
295(2)
6.1.6 Enhancement Limitations
297(2)
6.1.7 The Choice of Solvents for Photothermal Lens Measurements
299(1)
6.1.7.1 Aqueous Solutions of Electrolytes
300(2)
6.1.7.2 Aqueous Solutions of Surfactants and Water-Soluble Polymers
302(1)
6.1.7.3 Organo-aqueous Mixtures
303(2)
6.1.7 A Soret Effect in Mixed Media
305(1)
6.2 Optical Instrumentation for Analysis
306(10)
6.2.1 Dynamic Reserve
306(1)
6.2.2 Differential Measurements
307(3)
6.2.3 Spectroscopic Measurement
310(3)
6.2.4 Fiber Optics
313(3)
6.3 Processing Photothermal Signals
316(10)
6.3.1 Analog Signal Processing
320(1)
6.3.2 Digital Signal Processing
321(5)
6.4 Photothermal Data Processing
326(10)
6.4.1 Excitation Irradiance Curves
327(1)
6.4.2 Calibration
327(2)
6.4.3 Metrological Parameters of Photothermal Lens Spectrometry
329(1)
6.4.3.1 Accuracy of Photothermal Lens Measurements
329(1)
6.4.3.2 Instrumental and Method Detection Limits
329(2)
6.4.3.3 Photothermal Limits of Detection
331(2)
6.4.3.4 Photothermal Error Curves
333(3)
6.5 Considerations for Trace Analysis
336(4)
6.5.1 Instability of Dilute Solutions
337(1)
6.5.2 Sources of Losses and Contamination
337(2)
6.5.3 Changes in Sensitivity and Selectivity Due to Chemistry at the Trace Level
339(1)
6.5.4 Statistical Features at the Level of Low Concentrations
340(1)
6.6 Tracking Down and Reducing Noise
340(2)
References
342(5)
7 Analytical Applications
347(88)
7.1 Areas of Analytical Application
347(1)
7.2 Applications to Stationary Homogeneous Samples
348(16)
7.2.1 Photothermal Techniques
348(3)
7.2.2 Gas Phase Samples
351(10)
7.2.3 Liquid Samples
361(3)
7.3 Application to Disperse Solutions
364(6)
7.3.1 Nano-sized Particles and Nanocomposite Materials
364(1)
7.3.2 Analysis of Biological Samples
365(5)
7.4 Photothermal Spectroscopy Detection in Chromatography and Flow Analysis
370(17)
7.4.1 Temperature Change in Flowing Samples
371(2)
7.4.2 Deflection Angles and Inverse Focal Lengths in Flowing Samples
373(1)
7.4.2.1 Isotropic and Turbulent Flow
373(2)
7.4.2.2 Laminar Flow
375(1)
7.4.3 Applications in Chromatography
376(7)
7.4.3.1 Gas Chromatography and Flowing Gas Analysis
383(1)
7.4.3.2 Liquid Phase
383(2)
7.4.4 Application to How Injection Analysis
385(2)
7.5 Photothermal Spectroscopy Detection in Capillary Electrophoresis
387(15)
7.5.1 Influence of Electrophoretic Flow Rate
389(4)
7.5.2 Effect of the Composition of the Background Electrolyte Solution on the Sensitivity
393(1)
7.5.3 Applications
394(8)
7.6 Photothermal Spectroscopy Detection in Microanalytical and Microfluidic Systems
402(2)
7.7 Determination of Parameters of Reactions
404(4)
7.7.1 Determination of Thermodynamic Parameters and Constants
404(2)
7.7.2 Chemical Reaction Control and Real-time Monitoring
406(1)
7.7.3 Kinetic Parameters of Reactions
406(2)
7.8 Excitation and Relaxation Kinetics
408(15)
7.8.1 Relaxation Kinetics and Quantum Yield Studies
409(5)
7.8.2 Photodynamic Irradiance-dependent Signal Studies
414(3)
7.8.3 Optical Bleaching in Organic Dye Molecules
417(5)
7.8.4 Optical Bleaching Effects in Pulsed Laser Photothermal Spectroscopy
422(1)
References
423(12)
8 Photothermal Spectroscopy of Heterogeneous Samples
435(46)
8.1 Types of Heterogeneity
435(1)
8.2 Apparatuses for Photothermal Deflection
436(1)
8.3 Surface Absorption
437(4)
8.3.1 Thermal Diffusion at Surfaces
437(1)
8.3.2 Temperature Change from Pulsed Excitation
438(1)
8.3.3 Temperature Change from Continuous Excitation
438(1)
8.3.4 Temperature Change from Periodic Excitation
439(2)
8.4 Thermal Diffusion in Volume Absorbing Samples
441(2)
8.4.1 Volume Temperature Change for Pulsed Excitation
441(1)
8.4.2 Periodic Excitation of Volume Absorbers
442(1)
8.5 Temperature Change in Layered Samples
443(6)
8.5.1 Periodic Excitation of Layered Samples
445(2)
8.5.2 Pulsed Excitation of Thick-layered Samples
447(2)
8.6 Surface Point Source
449(3)
8.7 Gaussian Beam Excitation of Surfaces
452(3)
8.8 Gaussian Beam Excitation of Transparent Materials
455(2)
8.9 Excitation of Layered Samples with Gaussian Beams
457(3)
8.10 Deflection Angles with Oscillating Gaussian Excitation
460(3)
8.11 Photothermal Reflection
463(1)
8.12 Experiment Design for Photothermal Deflection
463(2)
8.13 Application to Determination of Solid Material Properties
465(6)
8.13.1 Bulk Properties
466(2)
8.13.1.1 Thermo-optical Properties
468(1)
8.13.1.2 Quantum Yields
469(1)
8.13.2 Solid Surfaces
470(1)
8.14 Applications to Chemical Analysis
471(5)
8.14.1 Application to Surface Determination and Optical Sensing Materials
471(1)
8.14.2 Applications to Gel and Thin-layer Chromatography
472(1)
8.14.3 Other Application to Applied Chemical Analysis
473(1)
8.14.4 Application to Biological Analysis
474(2)
References
476(5)
Index 481
Stephen E. Bialkowski, PhD, is Professor of Chemical Analysis at Utah State University with interests in atmospheric chemistry, spectroscopy, nonlinear optics, and chemometrics.

Nelson G. C. Astrath, PhD, is Associate Professor in the Department of Physics at Universidade Estadual de Maringį with interests in photothermal sciences and light and matter interaction effects.

Mikhail A. Proskurnin, PhD, is Professor in Analytical Chemistry in the Department of Chemistry at Lomonosov Moscow State University with interests in photonics, analytical spectroscopy, and photothermal spectroscopy in analytical and physical chemistry and applied materials science and biomedical research.