Atjaunināt sīkdatņu piekrišanu

Phyllotactic Patterns: A Multidisciplinary Approach [Hardback]

(Univ Of Prince Edward Island, Canada), (Univ Of Montreal, Canada)
  • Formāts: Hardback, 300 pages
  • Izdošanas datums: 11-May-2020
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9811211000
  • ISBN-13: 9789811211003
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 119,74 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 300 pages
  • Izdošanas datums: 11-May-2020
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9811211000
  • ISBN-13: 9789811211003
Citas grāmatas par šo tēmu:

The book provides a current review of the field of phyllotaxis from a variety of perspectives, that is, morphological, developmental, biochemical, molecular genetics, biophysical, and evolutionary. This unique book covers phyllotactic processes from the level of genes involved in the establishment of patterns to modeling the emergence of those patterns in space and time. The models in question (deterministic or stochastic) touch on various fields, including geometry, biochemistry, and biophysics. Not only providing a recent review but also current critique and analysis of the discipline, the book will appeal to a variety of individuals involved in developmental modeling as well as pattern initiation and formation. The text is highly illustrated with excellent pictures representing recent developments in the field. A biological context or perspective to models and ideas is explored in the book. Terminology specific to the discipline is defined and updated as well.

Acknowledgements ix
Introduction xi
1 Phyllotactic Parameters
1(36)
Organ Initiation and Functioning of the Shoot Apical Meristem
1(8)
Leaf Asymmetry and Phyllotaxis
9(3)
Fluctuating Form and Size of the SAM: The Case of Thuja Occidentalis
12(1)
Description of Spiral Phyllotactic Patterns
13(3)
Phyllotactic Parameters
16(3)
Generative Spiral and Divergence Angle
19(2)
Visible Opposed Parastichies
21(3)
Parameter b (Van Iterson's Parameter)
24(1)
Plastochrone Ratio
25(1)
Phyllotactic Pattern Transitions
26(4)
Variation of Divergence Angle
30(2)
Empirical Measures of Phyllotactic Parameters
32(2)
Disorganised Phyllotactic Patterns
34(1)
Conclusion
35(2)
2 Dynamical Models
37(22)
Chemical Models
38(4)
Energy-based Dynamical Models
42(8)
Empirical Observations and Dynamical Models
50(1)
Wave Model of Phyllotaxis Involving Auxin
51(2)
Wave equations
53(2)
Gradient Flow of Auxin
55(2)
Conclusion
57(2)
3 Statistical and Probabilistic Approaches
59(32)
Dynamical Systems and Irregular Patterns
61(2)
Information Entropy Concepts Applied to Phyllotaxis
63(4)
Statistical Methods
67(4)
Uncertainty in Divergence Angle
71(1)
Combinatorial Analysis of Irregular Patterns
72(5)
Developmental Origin of Permutations
77(2)
Irregular Patterns and Noise in a Dynamical Model
79(3)
Secondary Inhibitory Fields
82(1)
Stochastic Manifestation of Phyllotaxis at Cellular Level
83(4)
Interplay of Phyllotactic Parameters
87(3)
Conclusion
90(1)
4 Role of Genes in the Framework of Biochemical and Molecular Models
91(64)
Positional Information and Cell Lineage
92(2)
Position of Primordia
94(2)
Genes and Their Effects on Pattern Formation
96(4)
Phyllotactic Mutants
100(4)
Phyllotactic Mutations and Their Correlation with Phyllotactic Parameters
104(3)
Other Examples of Genes Affecting Phyllotaxis
107(2)
Morphogens: The Role of Auxin
109(6)
Expansins and Auxins: A Bridge Between Different Models?
115(4)
Comprehensive Auxin Distribution Model: The Work of Smith et al. (2006b)
119(5)
Equations governing cell polarisation and auxin transport
121(2)
Emergence of phyllotactic patterns
123(1)
Auxin Transport Between Cell Compartments: Model of Jonsson et al. (2006)
124(9)
Auxin transport model
125(2)
Auxin-driven PIN1 cycling
127(2)
Phyllotactic patterns
129(4)
Auxin-Flux-based Polarisation Model of Stoma et al. (2008)
133(5)
Auxin transport
135(1)
Flux-based polarisation
136(2)
Floral Phyllotaxis
138(8)
Conclusion
146(1)
Appendix 1
147(8)
5 Biophysical Aspects of Phyllotaxis
155(34)
Representation of SAM in Biomechanical Models
159(3)
Periodic Generation of Phyllotactic Patterns
162(1)
Geometrical Representation and Vectorial Representation
163(3)
Equation Minimising Elastic Energy
166(2)
Parameters
168(4)
Stress parameters
170(1)
Geometric parameters
171(1)
Area of Newly Formed Primordia
172(1)
Planform
173(2)
Transitions
175(2)
Coupling Mechanical and Biochemical Processes
177(7)
Integration of Physical and Biochemical Parameters at the Cellular Level
184(4)
Conclusion
188(1)
6 Concluding Remarks: Critical Analysis and State of the Discipline
189(22)
Phyllotaxis: Evolutionary Considerations
190(5)
Relationship between Physics and Biochemistry
195(1)
Growth Modes
195(3)
Comparison between Models
198(3)
Parameter Γ (Link between Models)
201(2)
Developmental Constraints, Genetics, and Self-Organisation
203(2)
Genetic Constraints
205(1)
Main Challenges in Phyllotaxis
205(4)
General Conclusion
209(2)
Glossary 211(12)
Bibliography 223(32)
Index 255