nav atļauts
nav atļauts
Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).
Nepieciešamā programmatūra
Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)
Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)
Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.
Introduction.- Part I Survey.- 2 History of metallic glasses.- 2.1 Early metallic glasses.- 2.1.1 Vapour deposited thin films.- 2.1.2 The discovery of metallic glasses.- 2.2 Bulk metallic glasses (BMG).- 2.3 Processing technology development.- 3 Properties and applications of bulk metallic glasses.- 3.1 Properties of bulk metallic glasses.- 3.1.1 Soft magnetic properties.- 3.1.2 Mechanical properties.- 3.1.3 High-temperature oxidation resistance.- 3.1.4 Electrochemical properties and corrosion resistance.- 3.2 Some applications of bulk metallic glasses.- 3.2.1 Soft-magnetic applications.- 3.2.2 Applications as small complex, high strength parts.- 3.2.3 Catalytic applications.- 3.2.4 Jewellery applications.- 3.2.5 Biomedical applications.- Part II Thermophysical properties of BMG-forming liquids.- 4 Thermodynamics of glass-forming liquids.- 4.1 Thermodynamic studies.- 4.1.1 Calorimetric scans at constant heating rates.- 4.1.2 Specific heat capacity measurements.- 4.1.3 Calculation of the thermodynamic functions.- 4.1.4 Driving force for crystallisation.- 4.2 CALPHAD modelling.- 4.3 Metastable phase diagrams.- 5 Thermodynamic and kinetic aspects of the glass transition.- 5.1 Thermodynamic signatures of the glass transition.- 5.2 Studies of the Prinogine-Defay ratio of bulk metallic glasses.- 5.3 Kinetic signatures of the glass transition.- 5.4 Kauzmann temperature and ideal thermal glass transition.- 5.5 Definition of the limiting fictive temperature.- 6 Glass transition studies of bulk metallic glasses.- 6.1 Standard DSC scansfor the study of the glass transition.- 6.2 Vitrification kinetics studies via chip-calorimetry.- 6.3 Dynamic glass transition.- 6.3.1 Temperature modulating calorimetry.- 6.3.2 Multifrequency step-response analysis.- 6.3.3 Cooperative length scale at the glass transition.- 6.3.4 Dynamic glass transition temperature versus fictive temperature.- 6.4 Structural signatures of the glass transition.- 7 Physical aging studies in bulk-metallic glasses.- 7.1 Introduction to physical aging.- 7.2 Viscosity relaxation studies.- 7.3 Volume relaxation studies.- 7.4 Enthalpy relaxation studies.- 7.5 Enthalpy recovery studies.- 7.6 Activation energy spectrum of relaxation.- 7.7 Atomic dynamics via XPCS studies.- 8 Fragility of bulk metallic glass-forming liquids.- 8.1 Kinetic fragility.- 8.2 Thermodynamic fragility.- 8.3 Structural fragility.- 9 Liquid-liquid transition in bulk metallic glass-forming liquids.- 9.1 Kinetic crossovers.- 9.2 Thermodynamic signatures of the liquid-liquid transition.- 9.3 Dynamic crossovers.- 9.4 Shear rate-induced mechanisms.- 10 Glass forming ability of bulk metallic glasses.- 10.1 Empirical rules for glass forming ability.- 10.2 Description of glass forming ability based on TTT-diagrams.- 11 Summarizing remarks.- 11.1 Vitrification kinetics versus atomic mobility.- 11.2 Activation energy spectrum for enthalpy relaxation.- 11.3 Connection between the kinetic fragility, thermodynamics and structural changes in the undercooled liquid.- 11.4 Crossovers during the liquid-liquid transition.- 11.5 Glass forming ability of bulk metallic glasses.