Atjaunināt sīkdatņu piekrišanu

E-grāmata: Physical Principles of Astronomical Instrumentation

, , (Cardiff University, School of Physics and Astronomy, United Kingdom)
  • Formāts - PDF+DRM
  • Cena: 58,85 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Offering practical advice on a range of wavelengths, this highly accessible and self-contained book presents a broad overview of astronomical instrumentation, techniques, and tools.

Drawing on the notes and lessons of the authors established graduate course, the text reviews basic concepts in astrophysics, spectroscopy, and signal analysis. It includes illustrative problems and case studies and aims to provide readers with a toolbox for observational capabilities across the electromagnetic spectrum and the knowledge to understand which tools are best suited to different observations. It is an ideal guide for undergraduates and graduates studying astronomy.

Features:











Presents a self-contained account of a highly complex subject.





Offers practical advice and instruction on a wide range of wavelengths and tools.





Includes case studies and problems for further learning opportunities.

Solutions Manual available upon qualifying course adoption.
Preface xiii
Authors xv
Chapter 1 Review of Electromagnetic Radiation 1(20)
1.1 Introduction
1(1)
1.2 Mathematical Description of Waves
1(1)
1.3 Maxwell's Equations
2(1)
1.4 Electromagnetic Waves
3(1)
1.5 Plane EM Waves
4(2)
1.6 Energy in EM Waves
6(1)
1.7 Wave Particle Duality
7(1)
1.8 Interaction of EM Radiation with Charged Particles
8(1)
1.9 Complex Number Representation of Waves
8(1)
1.10 Superposition and Wave Interference
9(1)
1.11 Radiative Transfer
10(7)
1.11.1 Flux, Flux Density, and Intensity
11(2)
1.11.2 The Equation of Radiative Transfer
13(1)
1.11.3 Emission Only
14(1)
1.11.4 Absorption Only
14(1)
1.11.5 Thermal Equilibrium
15(1)
1.11.6 Thermal Emission from a Semi-Transparent Region
15(1)
1.11.7 Transmission of the Earth's Atmosphere
16(1)
1.12 Polarisation
17(4)
1.12.1 Linear, Circular, and Elliptical Polarisation
17(2)
1.12.2 Stokes Parameters
19(2)
Chapter 2 Astrophysical Radiation 21(20)
2.1 Astrophysical Radiation Mechanisms
21(1)
2.2 Black Body Radiation and the Planck Function
21(3)
2.2.1 Rayleigh-Jeans and Wien Regions
21(2)
2.2.2 Wien's Displacement Law
23(1)
2.2.3 Stefan's Law
24(1)
2.2.4 Emissivity
24(1)
2.3 Free-Free Radiation
24(2)
2.4 Non-Thermal Emission Mechanisms: Cyclotron and Synchrotron Radiation
26(4)
2.5 Quantum Transitions
30(9)
2.5.1 Atomic Transitions
30(3)
2.5.2 Molecular Vibrational Transitions
33(2)
2.5.3 Molecular Rotational Transitions
35(1)
2.5.4 Vibrational-Rotational Transitions
35(1)
2.5.5 Line Broadening
36(3)
2.5.5.1 Collisional (Pressure) Broadening
37(1)
2.5.5.2 Thermal (Doppler) Broadening
37(2)
2.5.6 Spectral Line Databases
39(1)
2.5.7 γ-Ray Line Emission
39(1)
2.6 Polarised Radiation in Astronomy
39(2)
Chapter 3 Interaction of Electromagnetic Radiation with Matter 41(18)
3.1 Radio Wavelengths (γ < ~ 1mm)
41(5)
3.1.1 The Earth's Ionosphere
41(2)
3.1.2 Antennas
43(2)
3.1.3 Detection of the Intercepted Radiation
45(1)
3.2 Infrared-Optical-UV Wavelengths (λ=1mm=30nm)
46(3)
3.2.1 Photon Absorption Mechanisms
46(1)
3.2.2 Electron Promotion in Semiconductors
46(2)
3.2.3 The Photoelectric Effect
48(1)
3.3 X-Ray and γ-Ray Wavelengths
49(3)
3.3.1 Photoelectric Interaction
49(1)
3.3.2 The Compton Effect
49(2)
3.3.3 Electron-Positron Pair Production
51(1)
3.3.4 Mass Attenuation Coefficient
52(1)
3.4 The Effects of the Earth's Atmosphere
52(7)
3.4.1 Atmospheric Absorption
52(4)
3.4.2 Atmospheric Emission
56(1)
3.4.3 Atmospheric Turbulence and Seeing
57(1)
3.4.4 Earth-Based and Space-Borne Observatories
57(2)
Chapter 4 Telescopes and Optical Systems 59(26)
4.1 Introduction
59(1)
4.2 Telescope Configurations
59(1)
4.3 Telescope Mounting Methods
60(3)
4.4 Telescope Optics
63(4)
4.4.1 Lens Optics
63(1)
4.4.2 Mirror Optics
64(1)
4.4.3 The Plate Scale
65(1)
4.4.4 Telescope Throughput
66(1)
4.5 Optical Aberrations
67(5)
4.5.1 Spherical Aberration
68(1)
4.5.2 Coma
69(1)
4.5.3 Astigmatism
69(1)
4.5.4 Field Curvature
70(1)
4.5.5 Distortion
70(1)
4.5.6 Chromatic Aberration
70(2)
4.6 Diffraction
72(6)
4.6.1 The Rayleigh Criterion
75(1)
4.6.2 Beam Profile or Point Spread Function
76(2)
4.6.3 Strehl Ratio
78(1)
4.7 Fourier Optics
78(4)
4.8 Spatial Interferometry
82(3)
Chapter 5 Key Concepts in Astronomical Measurement 85(14)
5.1 Introduction
85(1)
5.2 Transduction
85(1)
5.3 The Decibel Scale
85(1)
5.4 Responsivity
86(1)
5.5 Response Time (Speed of Response)
86(2)
5.6 Background Radiation
88(1)
5.7 Noise and Signal-to-Noise Ratio
89(1)
5.8 Electrical Filtering and Integration
89(1)
5.9 Nyquist Sampling
90(1)
5.10 Linearity
91(1)
5.11 Dynamic Range
92(1)
5.12 Types of Measurement: Photometry, Spectroscopy, Spectro-photometry
92(1)
5.13 Calibration
93(6)
5.13.1 The Stellar Magnitude System
93(1)
5.13.2 Standard Filter Bands
94(2)
5.13.3 Colour Correction
96(3)
Chapter 6 Sensitivity and Noise in Electromagnetic Detection 99(24)
6.1 Introduction
99(1)
6.2 An Ideal Photon Detector
99(3)
6.3 Noise Equivalent Power
102(2)
6.3.1 Background-Limited NEP
103(1)
6.4 Efficiency of Photon Detectors
104(1)
6.4.1 DQE and NEP of an Imperfectly Absorbing but Noiseless Detector
104(1)
6.5 Photon Shot Noise and Wave Noise
104(2)
6.6 Background Photon Noise-Limited NEP of a Broadband Detector
106(3)
6.6.1 NEPph for a Photon-Counting Detector
106(2)
6.6.2 NEPph for Broadband Power Detector
108(1)
6.7 Additional Sources of Noise
109(6)
6.7.1 Thermal Noise from a Resistor
109(3)
6.7.2 Electron Shot Noise
112(1)
6.7.3 Generation-Recombination Noise
112(1)
6.7.4 Phonon Noise
113(1)
6.7.5 1/f - Noise
113(1)
6.7.6 kTC Noise
113(1)
6.7.7 Interference
114(1)
6.7.8 Microphonic Noise
114(1)
6.8 Combination of Noise from Several Sources
115(1)
6.8.1 Overall Noise and NEP
115(1)
6.9 Optimising a System for Best Sensitivity
116(4)
6.9.1 Choosing the Signal Frequency or Frequency Band
116(1)
6.9.2 Choosing the Post-Detection Bandwidth
116(3)
6.9.3 Minimising Noise from the Detector and Its Readout and Signal-Processing Electronics
119(1)
6.10 Noise Equivalent Flux Density
120(3)
Chapter 7 Astronomical Spectroscopy 123(32)
7.1 Introduction
123(1)
7.2 Spectrometer Types
123(1)
7.3 Prism Spectrometers
124(2)
7.4 Grating Spectrometers
126(10)
7.4.1 The Grating Equation and Grating Dispersion
126(2)
7.4.2 Grating Response to a Monochromatic Source
128(2)
7.4.3 Spectral Resolving Power
130(1)
7.4.4 Free Spectral Range and Order-Sorting
130(1)
7.4.5 Effect of Finite Slit Width
131(1)
7.4.6 Blazed Gratings and Grating Efficiency
132(1)
7.4.7 Optical Matching between an Astronomical Source and a Grating Spectrometer
133(2)
7.4.8 The Echelle Spectrograph
135(1)
7.4.9 Grisms
136(1)
7.5 Fabry-Perot (FP) Spectrometers
136(7)
7.5.1 The Fabry-Perot Interferometer
137(3)
7.5.2 Free Spectral Range and Resolving Power
140(1)
7.5.3 Fabry-Perot Spectrometers
141(1)
7.5.4 Effects of Plate Absorption and Other Imperfections
141(2)
7.5.5 Rejection of Unwanted Orders
143(1)
7.6 Fourier Transform Spectrometers
143(8)
7.6.1 The Michelson Interferometer as a Fourier Transform Spectrometer
143(4)
7.6.2 Spectral Sampling
147(1)
7.6.3 Spectral Resolution and the Instrument Response Function
148(2)
7.6.4 Effect of a Non-Parallel Beam on Spectral Resolving Power
150(1)
7.6.5 FTS Operation and Data Reduction
151(1)
7.7 Advantages and Disadvantages of Different Spectrometer Types
151(1)
7.8 Grating Spectrometer Instruments
152(3)
7.8.1 Integral Field Units (IFU) and Multi-Object Spectrometers (MOS)
152(3)
Chapter 8 Radio Instrumentation 155(36)
8.1 Introduction
155(1)
8.2 Antennas
155(6)
8.2.1 Antenna Beam Pattern
155(1)
8.2.2 Gaussian Telescope Illumination
156(3)
8.2.3 Antenna Efficiencies
159(2)
8.3 Radio Receivers
161(10)
8.3.1 Power Received by a Radio Antenna
162(1)
8.3.2 The Total Power Radiometer
162(1)
8.3.3 System Temperature
163(1)
8.3.4 The Superheterodyne Receiver
164(3)
8.3.5 The Superheterodyne Total Power Receiver
167(1)
8.3.6 Quantum-Limited System Temperature
168(1)
8.3.7 Minimum Detectable Temperature and Power
169(2)
8.4 Mixers and Amplifiers
171(2)
8.4.1 The Schottky Diode Mixer
171(1)
8.4.2 Superconductor-Insulator-Superconductor (SIS) Mixers
171(1)
8.4.3 Hot Electron Bolometer Mixers
172(1)
8.4.4 High Electron Mobility Transistors
172(1)
8.5 Local Oscillators
173(1)
8.6 IF Spectrometers
174(2)
8.6.1 The Multichannel (Filter Bank) Spectrometer
174(1)
8.6.2 The Acousto-Optic Spectrometer (AOS)
175(1)
8.6.3 The Digital Autocorrelation Spectrometer
175(1)
8.6.4 The Direct FFT Spectrometer
176(1)
8.7 Radio Observations
176(2)
8.7.1 Source Antenna Temperature
176(1)
8.7.2 Sensitivity to a Point Source
177(1)
8.7.3 Calibration Methods
178(1)
8.8 Radio Interferometry
178(8)
8.8.1 The Two-Element Radio Interferometer
179(2)
8.8.2 The Effect of Finite Bandwidth
181(1)
8.8.3 Fringe-Stopping
181(1)
8.8.4 Beam Synthesis
182(1)
8.8.5 Interferometer Observation of an Extended Source
183(1)
8.8.6 The uv Plane and Aperture Synthesis
184(1)
8.8.7 Interferometer Sensitivity
185(1)
8.9 Case Studies
186(5)
8.9.1 The 4-mm Receiver on the Green Bank Telescope
186(1)
8.9.2 The GREAT Spectrometer on Board the SOFIA Airborne Observatory
187(3)
8.9.3 The MeerKAT Radio Interferometer
190(1)
Chapter 9 Far-Infrared to Millimetre Wavelength Instrumentation 191(32)
9.1 Introduction
191(1)
9.2 Direct Detection Instruments
191(1)
9.3 Bolometric Detectors
192(11)
9.3.1 Bolometer Responsivity
195(1)
9.3.2 Bolometer Time Constant
196(1)
9.3.3 Bolometer Noise and NEP
197(1)
9.3.4 Dependence of Achievable Bolometer NEP on Operating Temperature
197(1)
9.3.5 Semiconductor Bolometers
198(2)
9.3.6 Semiconductor Bolometer Readout Electronics
200(1)
9.3.7 TES Bolometers
200(2)
9.3.8 TES Bolometer Readout Electronics
202(1)
9.4 Kinetic Inductance Detectors
203(1)
9.5 Choice of Bolometric and KID Detectors for the Far Infrared and Submillimetre
204(1)
9.6 Photoconductive Detectors
205(6)
9.6.1 Responsivity
205(2)
9.6.2 Dark Current
207(1)
9.6.3 Noise
207(1)
9.6.4 NEP
208(1)
9.6.5 Photoconductor Readout Electronics
209(2)
9.7 Choice of Photoconductors for the Far Infrared
211(1)
9.8 Coupling FIR and Submillimetre Detector Arrays to the Telescope
212(4)
9.8.1 Antenna-Coupled Arrays
214(1)
9.8.2 Absorber-Coupled Arrays
214(2)
9.9 Case Studies
216(7)
9.9.1 Herschel-SPIRE: A Space-Borne FIR-Submillimetre Camera and Spectrometer
216(3)
9.9.2 Spitzer-MIPS: A Space-Borne FIR Camera
219(1)
9.9.3 SCUBA-2: A Ground-Based Submillimetre Camera
220(3)
Chapter 10 Infrared to UV Instrumentation 223(30)
10.1 Introduction
223(1)
10.2 Infrared Detectors
223(7)
10.2.1 Photodiodes
223(3)
10.2.2 Infrared Photodiode Materials
226(1)
10.2.3 Infrared Photodiode Arrays
227(2)
10.2.4 Blocked Impurity Band (BIB) Photoconductive Detectors
229(1)
10.3 Optical and UV Detectors
230(14)
10.3.1 Charge-Coupled Devices (CCDs)
230(10)
10.3.1.1 Charge Transfer and Readout
231(3)
10.3.1.2 Buried Channel CCDs
234(1)
10.3.1.3 CCD Quantum Efficiency and Spectral Response
234(2)
10.3.1.4 CCD Noise
236(2)
10.3.1.5 Charge Multiplying CCDs
238(1)
10.3.1.6 CCD Performance Parameters
238(1)
10.3.1.7 Main Advantages of CCDs
239(1)
10.3.1.8 CCD Operation
240(1)
10.3.2 The Photomultiplier Tube
240(2)
10.3.3 The Microchannel Plate
242(1)
10.3.4 The Avalanche Photodiode
243(1)
10.4 Adaptive Optics
244(4)
10.4.1 Adaptive Optics Systems
246(2)
10.5 Case Studies
248(5)
10.5.1 The WFPC 3 Instrument on the Hubble Space Telescope
248(1)
10.5.2 The K-Band Multi-Object Spectrometer (KMOS) on the ESO-VLT
249(1)
10.5.3 MICADO - An Imager for the Extremely Large Telescope
249(4)
Chapter 11 X-Ray, γ-Ray, and Astro-Particle Detection 253(38)
11.1 Introduction
253(1)
11.2 X-ray CCDs and Fano Noise
253(3)
11.3 The Proportional Counter
256(3)
11.4 X-Ray Spectroscopy
259(1)
11.5 The X-Ray Calorimeter
259(2)
11.6 Scintillation Detectors
261(2)
11.7 Semiconductor Detectors: Silicon, Germanium, and Mercury Cadmium Telluride
263(2)
11.8 X- and γ-Ray Imaging
265(8)
11.8.1 Grazing Incidence X-Ray Telescopes
265(5)
11.8.2 Coded Mask Imaging
270(1)
11.8.3 The Compton Telescope
271(1)
11.8.4 Pair Creation Detectors
272(1)
11.9 High-Energy γ-Ray and Cosmic Ray Detection
273(3)
11.9.1 Extensive Air Showers
273(1)
11.9.2 eerenkov Radiation
274(2)
11.9.3 Extensive Air Shower Observatories
276(1)
11.10 Cosmic Neutrino Detection
276(1)
11.11 Case Studies
277(14)
11.11.1 XMM-Newton and Its Instruments
277(5)
11.11.2 The Swift Satellite and Its Instruments
282(2)
11.11.3 The Fermi Large Area Telescope
284(1)
11.11.4 The VERITAS Cerenkov Telescope Array for High-Energy Gamma-Ray Astronomy
285(3)
11.11.5 The IceCube Neutrino Observatory
288(3)
Bibliography 291(6)
Index 297
Professor Peter A. R. Ade

Professor Peter Ade received his PhD from Queen Mary College, London, in 1973, where he continued to build up a submillimetre wave instrumentation group specialising in producing state-of-the-art instruments for use in both atmospheric and astronomical research. In 2001 he relocated to Cardiff with other colleagues to form a larger instrumentation group. He is a member of the Royal Astronomical Society and is a chartered physicist with the Institute of Physics. He has over forty years' experience in instrumentation design and manufacture whilst pursuing his observational astrophysics and atmospheric science interests. He has been involved with the development and deployment of many astronomical instruments including ISO-LWS, Cassini-CIRS, Mars-PMIRR, SPT-pol, ACT-pol, EBEX, Pilot, BLAST, SCUBA, SCUBA-2, Spitzer, Herschel-SPIRE and Planck-HFI). In 1994 he was awarded a NASA public service medal for his contributions to fundamental advances in far infrared detector and sensor systems, which enabled critical measurements of atmospheric ozone chemistry. In 2009 he was presented with the Royal Astronomical Society Jackson-Gwilt Medal for contributions to astronomical instrumentation.

Professor Matt Griffin

Professor Matt Griffin studied Electrical Engineering at University College Dublin and Astrophysics at Queen Mary College London, receiving his PhD in 1985. His research work has included the development of instruments for both ground-based and space-borne observatories, and their use in the study of planetary atmospheres, star formation, galaxy evolution. He remained at Queen Mary until 2001, and was involved in various ground-based submillimetre instruments and in ESAs Infrared Space Observatory. Since 2001, he has been with the Astronomy Instrumentation Group at Cardiff University. As well as participating in the SCUBA, SCUBA-2, and Planck-HFI instruments, he was the Principal Investigator for the Herschel-SPIRE satellite instrument, for which he was awarded the Royal Astronomical Society Jackson-Gwilt Medal in 2011. He is a Fellow if the Institute of Physics and a Fellow of the Learned Society of Wales.

Professor Carole Tucker

Professor Carole Tucker studied Physics and Maths at Reading University, then Medical Radiation Physics at Queen Mary and Westfield College, London, completing her PhD in 2001. Having undertaken a great deal of cleanroom device fabrication and spectroscopy work, she took her first post-doctoral position with the Astronomy Instrumentation Group at QMW, working on hardware provision and characterisation for the Herschel and Planck satellite missions. In 2001 she moved with the instrumentation group to Cardiff University, where she took her first academic position in 2006. Carole manages the quasi-optical filter production facility at Cardiff, which leads to involvement with a great number of international FIR space and ground-based instrument teams. In addition she works with industry, supplying technology to scientific disciplines outside of astronomy. She is a Fellow of the Institute of Physics, the Royal Astronomical Society and of the Learned Society of Wales.